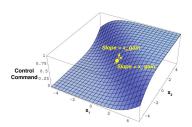
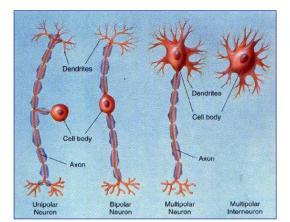

Neural Networks - 1

Robert Stengel Robotics and Intelligent Systems, MAE 345, Princeton University, 2013

Learning Objectives

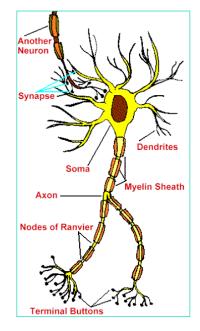

- Natural and artificial neurons
- Natural and computational neural networks
 - Linear network
 - Perceptron
 - Sigmoid network
- Applications of neural networks
- Supervised training
 - Left pseudoinverse
 - Steepest descent
 - Back-propagation
 - Exact algebraic fit

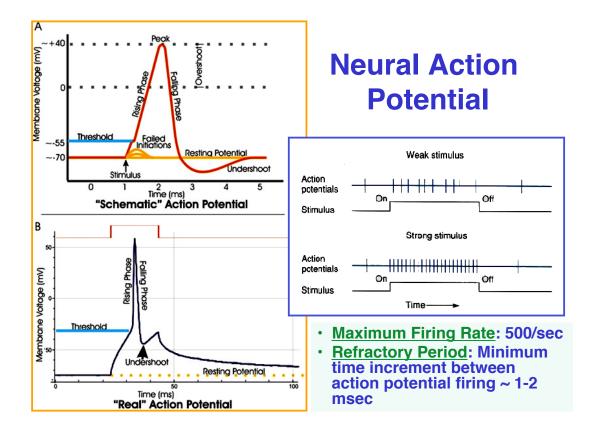
Copyright 2013 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html


Applications of Computational Neural Networks

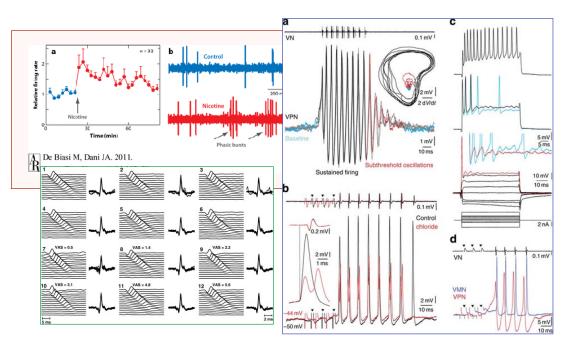
- Classification of data sets
- Nonlinear function approximation
 - Efficient data storage and retrieval
 - System identification
- Nonlinear and adaptive control systems

Neurons

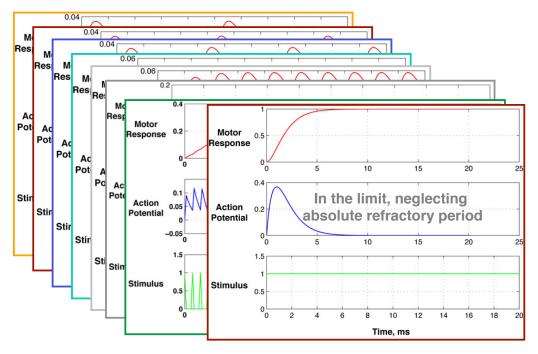

- Biological cells with significant electrochemical activity
- ~10-100 billion neurons in the brain
- Inputs from thousands of other neurons
- Output is scalar, but may have thousands of branches

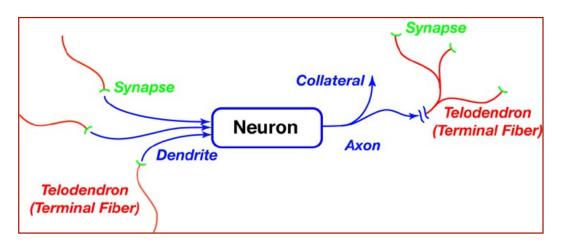


- Afferent (unipolar) neurons send signals from organs and the periphery to the central nervous system
- Efferent (multipolar) neurons issue commands from the CNS to effector (e.g., muscle) cells
- Interneurons (multipolar) send signals between neurons in the central nervous system
- Signals are ionic, i.e., chemical (neurotransmitter atoms and molecules) and electrical (potential)

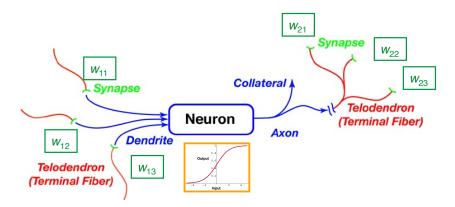

Activation Input to Soma Causes Change in Output Potential

- Stimulus from
 - Other neurons
 - Muscle cells
 - Pacemakers (c.g. cardiac sinoatrial node)
- When membrane potential of neuronal cell exceeds a threshold
 - Cell is polarized
 - Action potential pulse is transmitted from the cell
 - Activity measured by amplitude and firing frequency of pulses
- Cell depolarizes and potential returns to rest

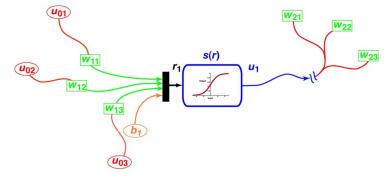



Some Recorded Action Potential Pulse Trains

Impulse, Pulse-Train, and Step Response of a LTI 2nd-Order Neural Model

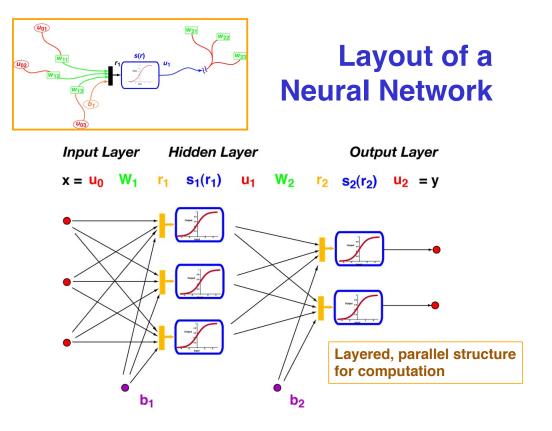


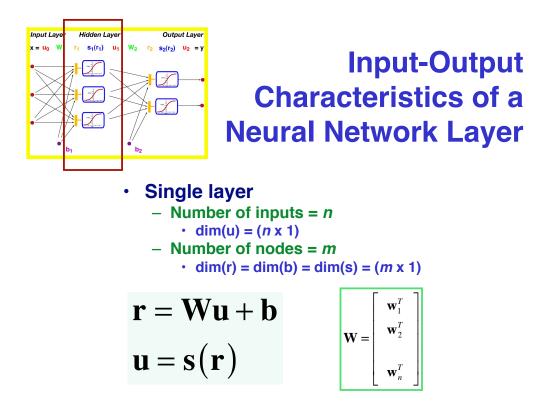
Multipolar Neuron

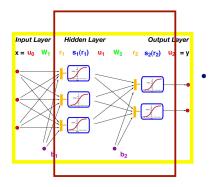


Mathematical Model of Neuron Components

Synapse effects represented by weights (gains or multipliers) Neuron firing frequency is modeled by linear gain or nonlinear element




The Neuron Function



- Vector input, **u**, to a single neuron
 - Sensory input or output from upstream neurons
 - Linear operation produces scalar, *r*
 - Add bias, **b**, for zero adjustment
- Scalar output, *u*, of a single neuron (or node)
 - Scalar linear or nonlinear operation, s(r)

$$r = \mathbf{w}^T \mathbf{u} + b$$
$$u = s(r)$$

Two-Layer Network

Two layers

Number of nodes in each layer need not be the same

- Node functions may be different, e.g.,

- Sigmoid hidden layer
- Linear output layer

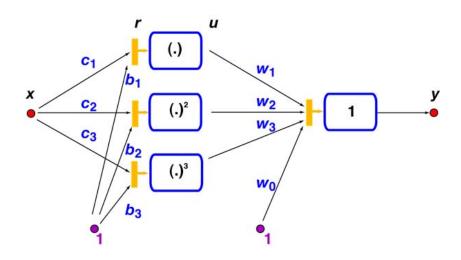
$$\mathbf{y} = \mathbf{u}_{2}$$

$$= \mathbf{s}_{2}(\mathbf{r}_{2}) = \mathbf{s}_{2}(\mathbf{W}_{2}\mathbf{u}_{1} + \mathbf{b}_{2})$$

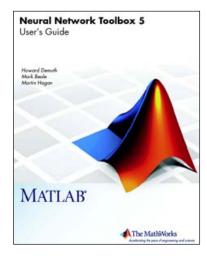
$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{r}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{W}_{1}\mathbf{u}_{0} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$


Is a Neural Network Serial or Parallel?

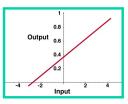
3rd-degree power series 4 coefficients Express as a neural network?


$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

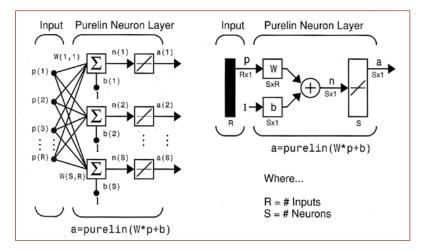
= $a_0' + a_1' r + a_2' r^2 + a_3' r^3$
= $a_0' + a_1' (c_1 x + b_1) + a_2' (c_1 x + b_2)^2 + a_3' (c_1 x + b_3)^3$
= $w_0 + w_1 s_1 (u) + w_2 s_2 (u) + w_3 s_3 (u)$

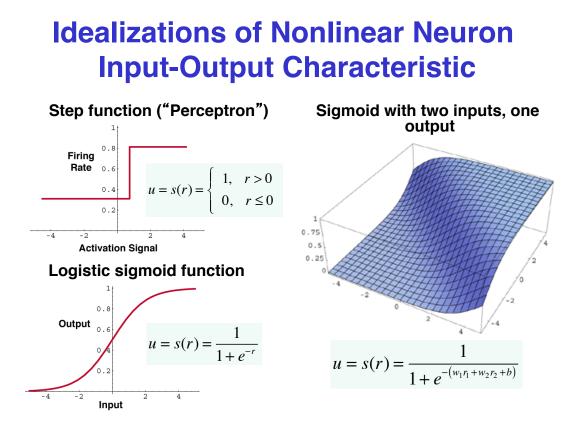
Is a Neural Network Serial or Parallel?

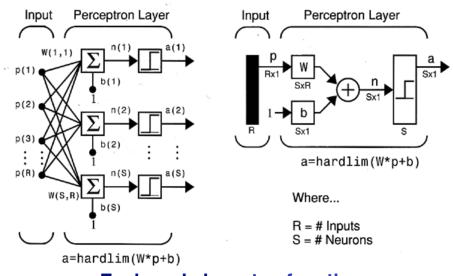
Power series is serial, but it can be expressed as a parallel neural network (with dissimilar nodes)


MATLAB Neural Network Toolbox

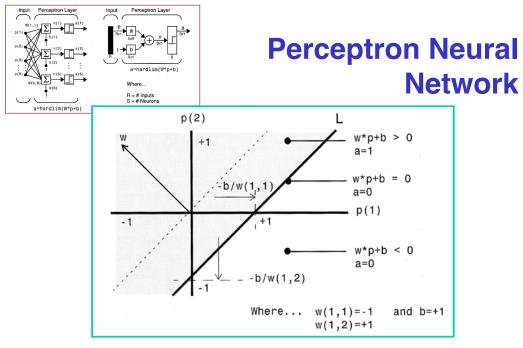
- Implementation of many neural network architectures
- Common calling sequences
- Pre- and postprocessing
- Command-line and GUI


MATLAB Training and Evaluation of "Backpropagation" Neural Networks


- Backpropagation (Ch. 5)
- Preprocessing to normalize data (5-62)
- Architecture (5-8)
- Simulation (5-14)
- Training algorithms (5-15, 5-52)


Linear Neural Network

- Outputs provide linear scaling of inputs
- Equivalent to matrix transformation of a vector, y = Wx + b
- Therefore, linear network is easy to train (left pseudoinverse)
- MATLAB symbology

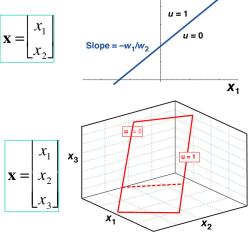


Perceptron Neural Network

Each node is a step function Weighted sum of features is fed to each node Each node produces a linear classification of the input space

Weights adjust slopes Biases adjust zero crossing points

Single-Layer, Single-Node Perceptron Discriminants


$$u = s(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} 1, & (\mathbf{w}^T \mathbf{x} + b) > 0 \\ 0, & (\mathbf{w}^T \mathbf{x} + b) \le 0 \end{cases}$$

Two inputs, single step function Discriminant

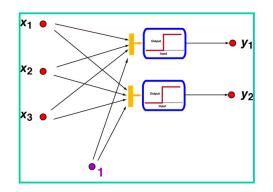
$$w_1 x_1 + w_2 x_2 + b = 0$$

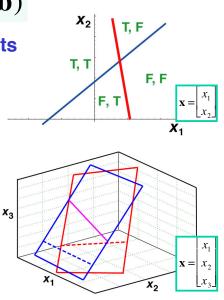
or $x_2 = \frac{-1}{w_2} (w_1 x_1 + b)$

Three inputs, single step function Discriminant

$$w_1 x_1 + w_2 x_2 + w_3 x_3 + b = 0$$

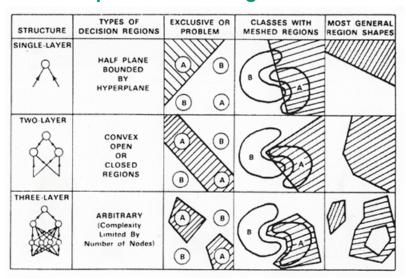
or $x_3 = \frac{-1}{w_3} (w_1 x_1 + w_2 x_2 + b)$

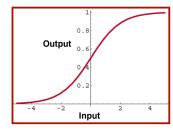

X2


Single-Layer, Multi-Node Perceptron Discriminants

 $\mathbf{u} = \mathbf{s}(\mathbf{W}\mathbf{x} + \mathbf{b})$

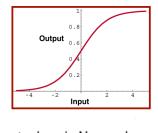
- Multiple inputs, nodes, and outputs

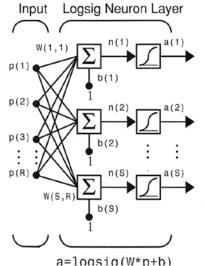

 More inputs lead to more dimensions in discriminants
 - More outputs lead to more discriminants



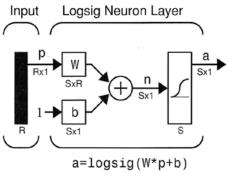
Multi-Layer Perceptrons Can Classify With Boundaries or Clusters

Classification capability of multi-layer perceptrons Classifications of classifications Open or closed regions

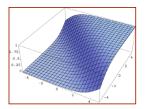

Sigmoid Activation Functions


- Alternative sigmoid functions
 - Logistic function: 0 to 1
 - Hyperbolic tangent: -1 to 1
 Augmented ratio of squares:
 - Augmented ratio of squares: 0 to 1
- Smooth nonlinear functions

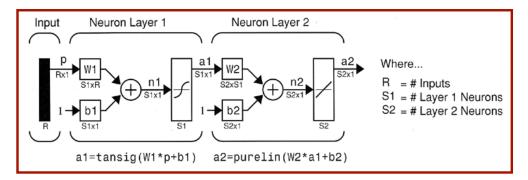
$$u = s(r) = \frac{1}{1 + e^{-r}}$$

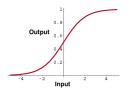

$$u = s(r) = \tanh r = \frac{1 - e^{-2r}}{1 + e^{-2r}}$$

$$u = s(r) = \frac{r^2}{1+r^2}$$

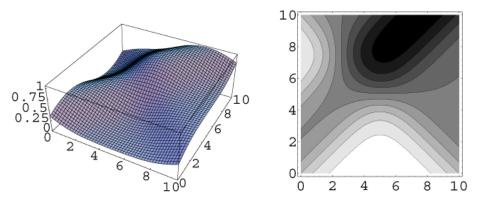


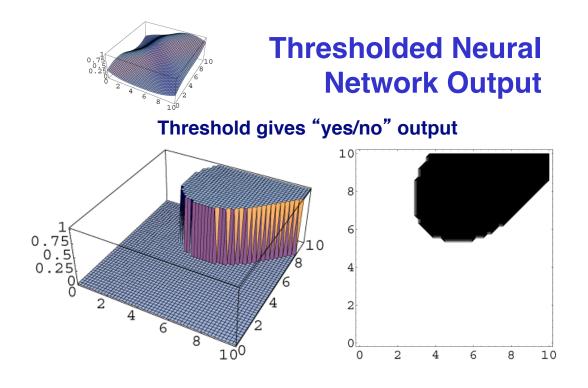
Sigmoid Neural Network


Where...

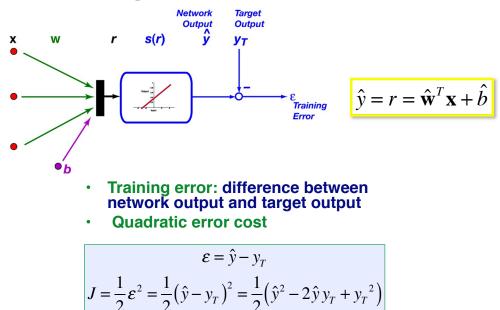

R = # InputsS = # Neurons

Single Sigmoid Layer is Sufficient ...


- Sigmoid network with single hidden layer can approximate any continuous function
- Therefore, additional sigmoid layers are unnecessary
- Typical sigmoid network contains
 - Single sigmoid hidden layer (nonlinear fit)
 - Single linear output layer (scaling)

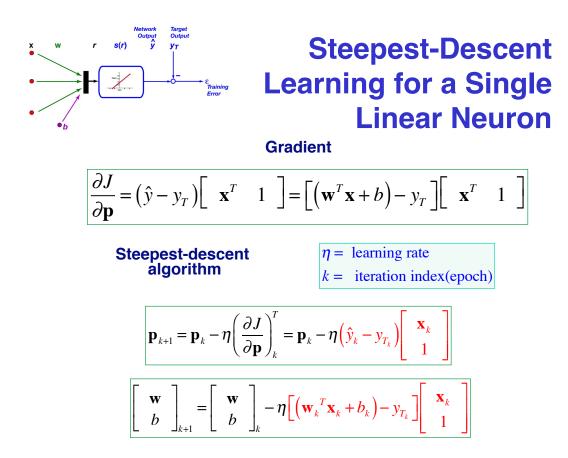


Typical Sigmoid Neural Network Output


Classification is not limited to linear discriminants

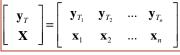
Sigmoid network can approximate a continuous nonlinear function to arbitrary accuracy with a single hidden layer

Linear Neuron Gradient


$$\hat{y} = r = \mathbf{w}^T \mathbf{x} + b$$

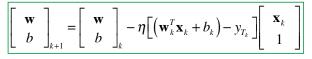
$$\frac{d\hat{y}}{dr} = 1$$

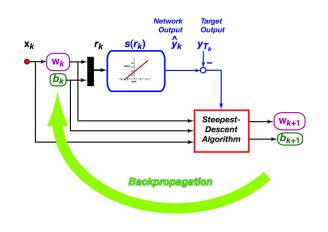
$$\hat{z} = \frac{1}{2} \varepsilon^2 = \frac{1}{2} (\hat{y} - y_T)^2 = \frac{1}{2} (\hat{y}^2 - 2\hat{y}y_T + y_T^2)$$

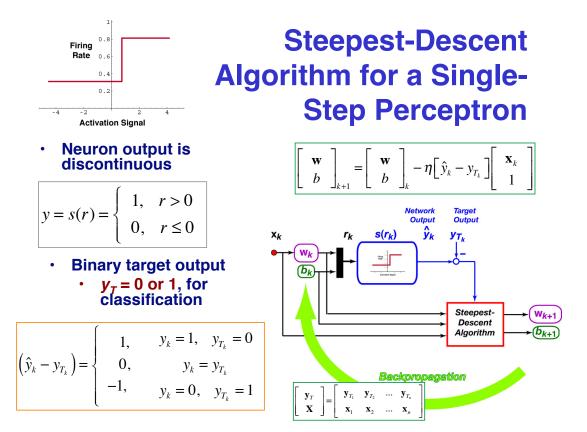

$$\cdot \text{ Training (control) parameter, p}$$

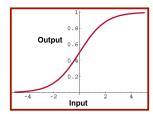
- Input weights, w (n x 1)
- Bias, b (1 x 1)
Optimality condition
$$\begin{bmatrix} \frac{\partial J}{\partial \mathbf{p}} = \mathbf{0} \end{bmatrix}$$

 $\mathbf{p} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ \dots \\ p_{n+1} \end{bmatrix}$
Gradient
 $\begin{bmatrix} \frac{\partial J}{\partial \mathbf{p}} = (\hat{y} - y_T) \frac{\partial y}{\partial \mathbf{p}} = (\hat{y} - y_T) \frac{\partial y}{\partial r} \frac{\partial r}{\partial \mathbf{p}}$
where
 $\frac{\partial r}{\partial \mathbf{p}} = \begin{bmatrix} \frac{\partial r}{\partial p_1} & \frac{\partial r}{\partial p_2} & \dots & \frac{\partial r}{\partial p_{n+1}} \end{bmatrix} = \frac{\partial (\mathbf{w}^T \mathbf{x} + b)}{\partial \mathbf{p}} = \begin{bmatrix} \mathbf{x}^T & \mathbf{1} \end{bmatrix}$

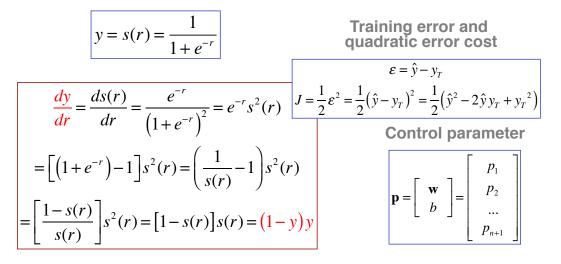


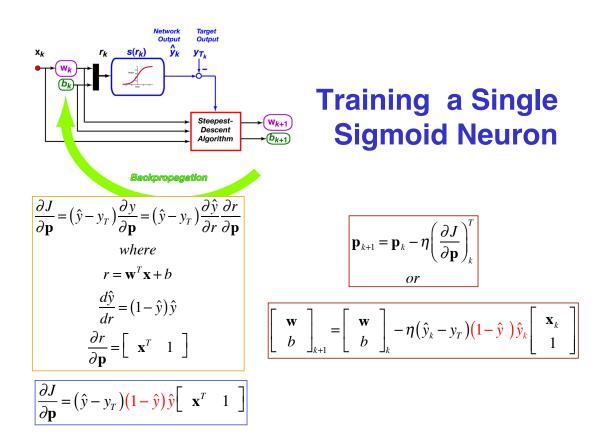

Backpropagation for a Single Linear Neuron

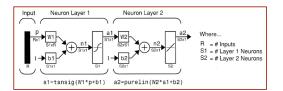

- Training set (*n* members)
 - Target outputs, $y_T (1 \times n)$
 - Feature set, X (m x n)



- Initialize w and b
 Random set
 - Prior training result
- Estimate w and b recursively
 - Off line (random or repetitive sequence)
 - On line (measured training features and target)
- ... until *∂J/∂*p ~ 0

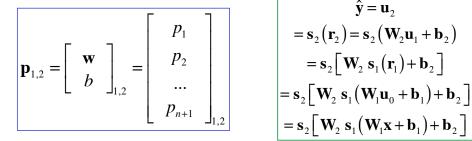


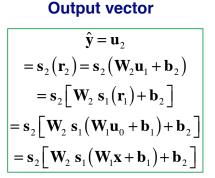


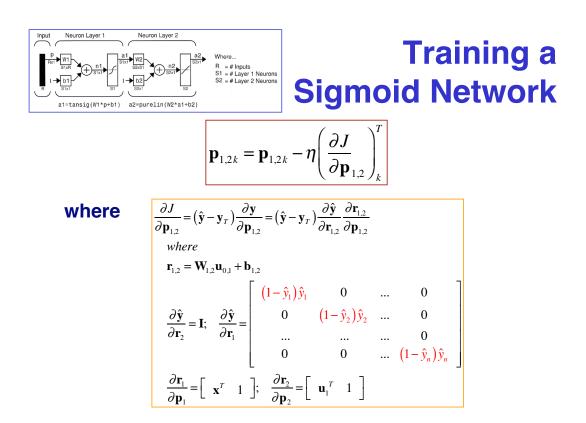


Training Variables for a Single Sigmoid Neuron

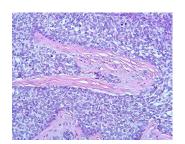
Input-output characteristic and 1st derivative



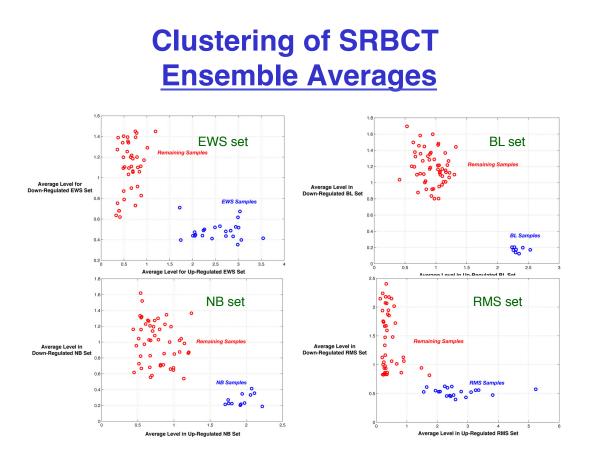




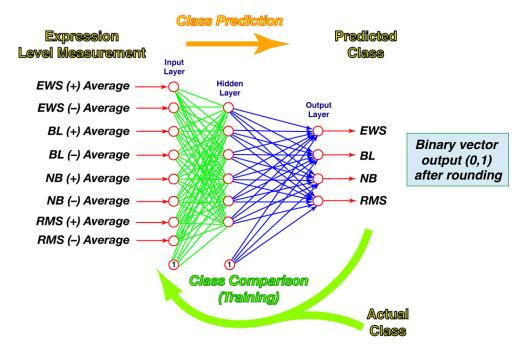
Training a Sigmoid Network


Two parameter vectors for 2-layer network

Small, Round Blue-Cell Tumor Classification Example

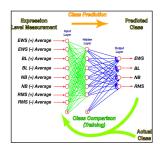

Desmoplastic small, round blue-cell tumors

- Childhood cancers, including
 - Ewing's sarcoma (EWS)
 - Burkitt's Lymphoma (BL)
 - Neuroblastoma (NB)
 - Rhabdomyosarcoma (RMS)
- cDNA microarray analysis presented by J. Khan, *et al.*, *Nature Medicine*, 2001, 673-679.
 - 96 transcripts chosen from 2,308 probes for training
 - 63 EWS, BL, NB, and RMS training samples
- Source of data for my analysis

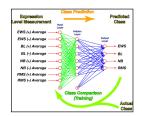


Overview of Present SRBCT Analysis

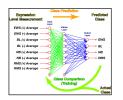
- Transcript selection by t test
 - 96 transcripts, 12 highest and lowest t values for each class
 - Overlap with Khan set: 32 transcripts
- Ensemble averaging of highest and lowest t values for each class
- Cross-plot of ensemble averages
- Classification by sigmoidal neural network
- Validation of neural network
 - Novel set simulation
 - Leave-one-out simulation


SRBCT Neural Network

Neural Network Training Set


Each input row is an ensemble average for a transcript set, normalized in (-1,+1)

	Identifier	Sample 1	Sample 2	Sample 3	 Sample 62	Sample 63
Target Output		EWS	EWS	EWS	 RMS	RMS
		EWS(+)Average	EWS(+)Average	EWS(+)Average	 EWS(+)Average	EWS(+)Average
		EWS(-)Average	EWS(-)Average	EWS(-)Average	 EWS(-)Average	EWS(-)Average
	Transcript	BL(+)Average	BL(+)Average	BL(+)Average	 BL(+)Average	BL(+)Average
	Training	BL(-)Average	BL(-)Average	BL(-)Average	 BL(-)Average	BL(-)Average
	Set	NB(+)Average	NB(+)Average	NB(+)Average	 NB(+)Average	NB(+)Average
		NB(-)Average	NB(-)Average	NB(-)Average	 NB(-)Average	NB(-)Average
		RMS(+)Average	RMS(+)Average	RMS(+)Average	 RMS(+)Average	RMS(+)Average
		RMS(-)Average	RMS(-)Average	RMS(-)Average	 RMS(-)Average	RMS(-)Average


SRBCT Neural Network Training

- Neural network
 - 8 ensemble-average inputs
 - various # of sigmoidal neurons
 - 4 linear neurons
 - 4 outputs
- Training accuracy
 - Train on all 63 samples
 - Test on all 63 samples
- 100% accuracy

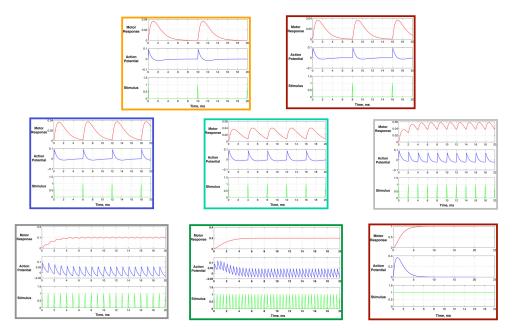
Leave-One-Out Validation of SRBCT Neural Network

- Remove a single sample
- Train on remaining samples (125 times)
- Evaluate class of the removed sample
- Repeat for each of 63 samples
- 6 sigmoids: 99.96% accuracy (3 errors in 7,875 trials)
- 12 sigmoids: 99.99% accuracy (1 error in 7,875 trials)

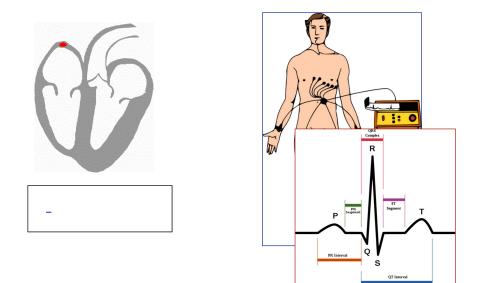
Novel-Set Validation of SRBCT Neural Network

- Network always chooses one of four classes (i.e., "unknown" is not an option)
- Test on 25 novel samples (400 times each)
 - 5 EWS
 - 5 BL
 - 5 NB
 - 5 RMS
 - 5 samples of unknown class
- 99.96% accuracy on first 20 novel samples (3 errors in 8,000 trials)
- 0% accuracy on unknown classes

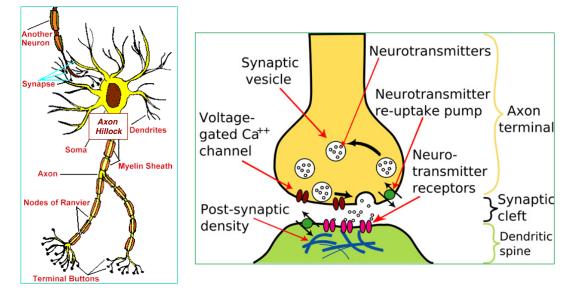
Observations of SRBCT Classification using Ensemble Averages


- t test identified strong features for classification in this data set
- Neural networks easily classified the four data types
- Caveat: Small, round blue-cell tumors occur in different tissue types
 - Ewing's sarcoma: Bone tissue
 - Burkitt's Lymphoma: Lymph nodes
 - Neuroblastoma: Nerve tissue
 - Rhabdomyosarcoma: Soft tissue

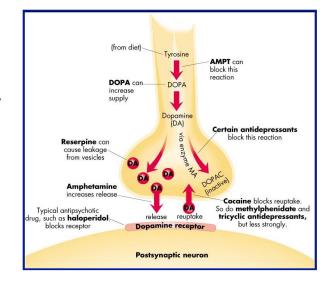
Gene expression (i.e., mRNA) variation may be linked to tissue differences as well as tumor genetics


Next Time: Neural Networks – 2

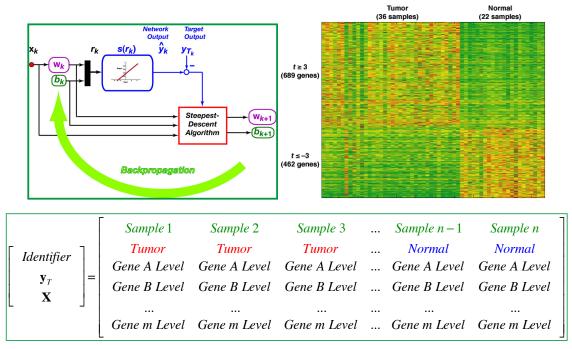
Supplementary Material


Impulse, Pulse-Train, and Step Response of a LTI 2nd-Order Neural Model

Cardiac Pacemaker and EKG Signals

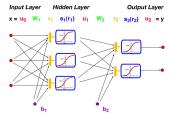


Electrochemical Signaling at Axon Hillock and Synapse



Synaptic Strength Can Be Increased or Decreased by Externalities

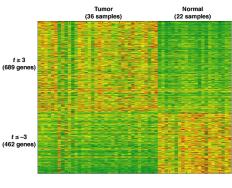
- Synapses: learning elements of the nervous system
 - Action potentials enhanced or inhibited
 - Chemicals can modify signal transfer
 - Potentiation of preand post-synaptic cells
- Adaptation/Learning (potentiation)
 - Short-term
 - Long-term


Microarray Training Set

Microarray Training Data

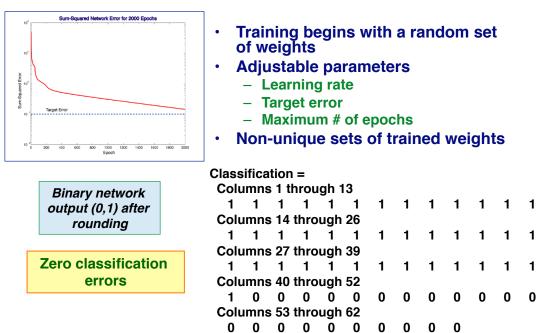
- First row: Target classification
- 2nd-5th rows: Up-regulated genes
- 6th-10th rows: Down-regulated genes

Lab Analys	sis o	f Tissue	Samp	oles												
Tumor	=[1	1111	111	1111	1111	1111	1111	111	1							
	11	11111	111	1111	000	0000	000	0000								
	0 0	0000	0 0 0];													
Normalized	d Dat	ta: Up-F	Regula	ted in	Tumor											
U22055	=	[138	68	93	62	30	81	121	7	82	24	-2	-48	38		
		82	118	55	103	102	87	62	69	14	101	25	47	48	75	
		59	62	116	54	96	90	130	70	75	74	35	149	97	21	
		14	-51	-3	-81	57	-4	16	28	-73	-4	45	-28	-9	-13	
		25	25	19	-21	3	19	34];								
lormalized	d Dat	ta: Up-F	Regula	ted in	Norma	ıl										
M96839	=	[3	-23	3	12	-22	0	4	29	-73	32	5	-13	-16	14	
		2	24	18	19	9	-13	-20	-3	-22	6	-5	-12	9	28	
		20	-9	30	-15	18	1	-16	12	-9	3	-35	23	3	5	
		33	29	47	19	32	34	20	55	49	20	10	36	70	50	
		15	45	56	41	31	40];									



Neural Network Classification Example

- ~7000 genes expressed in 62 microarray samples
 - Tumor = 1
 - Normal = 0


8 genes in strong feature set

- 4 with Mean Tumor/Normal > 20:1
- 4 with Mean Normal/Tumor > 20:1
- and minimum variance within upregulated set

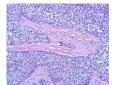
Dukes Stages: A -> B -> C -> D

Neural Network Training Results: Tumor/Normal Classification, 8 Genes, 4 Nodes

1 1

1 1

Neural Network Training Results: Tumor Stage/Normal Classification 8 Genes, 16 Nodes


Colon cancer classifi – 0 = Normal	cation de la construction de la	T	
 1 = Adenoma 2 = A Tumor 3 = B Tumor 4 = C Tumor 	Scalar network output with varying magnitude		
-5 = D Tumor	a de site site site site site	7000 8000	
Target = [2 1 3 3 3 3 3 3 3 3 3	Classification = Columns 1 through 13]
3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	2 1 3 3 3 3 3 3 3 3 3 Columns 14 through 26	3 3	33
55555100000	3 3 3 3 3 3 3 4 4 5 Columns 27 through 39	4 4	4
0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0]	4 4 4 5 5 5 5 5 5 5 Columns 40 through 52	5 1	10
One classification error	0 0 0 0 0 0 0 0 0 0 0 Columns 53 through 60	0 0) ()
	0 0 0 0 0 0 0		

24 transcripts selected from 12 highest and lowest *t* values for EWS vs. remainder

	Sort by EWS t Value	EWS	BL	NB	RMS
Image ID	Transcript Description	t Value	t Value	t Value	t Value
770394	Fc fragment of IgG, receptor, transporter, alpha	12.04	-6.67	-6.17	-4.79
1435862	antigen identified by monoclonal antibodies 12E7, F21 and O13	9.09	-6.75	-5.01	-4.03
377461	caveolin 1, caveolae protein, 22kD	8.82	-5.97	-4.91	-4.78
814260	follicular lymphoma variant translocation 1	8.17	-4.31	-4.70	-5.48
491565	Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain	7.60	-5.82	-2.62	-3.68
841641	cyclin D1 (PRAD1: parathyroid adenomatosis 1)	6.84	-9.93	0.56	-4.30
1471841	ATPase, Na+/K+ transporting, alpha 1 polypeptide	6.65	-3.56	-2.72	-4.69
866702	protein tyrosine phosphatase, non-receptor type 13	6.54	-4.99	-4.07	-4.84
713922	glutathione S-transferase M1	6.17	-5.61	-5.16	-1.97
308497	KIAA0467 protein	5.99	-6.69	-6.63	-1.11
770868	NGFI-A binding protein 2 (ERG1 binding protein 2)	5.93	-6.74	-3.88	-1.21
345232	lymphotoxin alpha (TNF superfamily, member 1)	5.61	-8.05	-2.49	-1.19
786084	chromobox homolog 1 (Drosophila HP1 beta)	-5.04	-1.05	9.65	-0.62
796258	sarcoglycan, alpha (50kD dystrophin-associated glycoprotein)	-5.04	-3.31	-3.86	6.83
431397		-5.04	2.64	2.19	0.64
825411	N-acetylglucosamine receptor 1 (thyroid)	-5.06	-1.45	5.79	0.76
859359	quinone oxidoreductase homolog	-5.23	-7.27	0.78	5.40
75254	cysteine and glycine-rich protein 2 (LIM domain only, smooth muscle)	-5.30	-4.11	2.20	3.68
448386		-5.38	-0.42	3.76	0.14
68950	cyclin E1	-5.80	0.03	-1.58	5.10
774502	protein tyrosine phosphatase, non-receptor type 12	-5.80	-5.56	3.76	3.66
842820	inducible poly(A)-binding protein	-6.14	0.60	0.66	3.80
214572	ESTs	-6.39	-0.08	-0.22	4.56
295985	ESTs	-9.26	-0.13	3.24	2.95

Repeated for BL vs. remainder, NB vs. remainder, and RMS vs. remainder

Comparison of Present SRBCT Set with Khan Top 10

Image ID Gene Description insulin-like growth factor 2	EWS Student t Value	BL Student t Value	NB Student t Value	RMS Student t Value	Most Significant t Value	Khan Gene Class
296448 (somatomedin A)	-4.789	-5.226	-1.185	5.998	RMS	RMS
Human DNA for insulin-like growth factor II (IGF-2); exon 207274 7 and additional ORF	-4.377	-5.424	-1.639	5.708	RMS	RMS
cyclin D1 (PRAD1:						
841641 parathyroid adenomatosis 1)	6.841	-9.932	0.565	-4.300	BL (-)	EWS/NB
365826 growth arrest-specific 1	3.551	-8.438	-6.995	1.583	BL (-)	EWS/RMS
486787 calponin 3, acidic	-4.335	-6.354	2.446	2.605	BL (-)	RMS/NB
Fc fragment of IgG, receptor,						
770394 transporter, alpha	12.037	-6.673	-6.173	-4.792	EWS	EWS
244618 ESTs insulin-like growth factor	-4.174	-4.822	-3.484	5.986	RMS	RMS
233721 binding protein 2 (36kD)	0.058	-7.487	-1.599	2 184	BL (-)	Not BL
43733 glycogenin 2	4.715					EWS
295985 ESTs	-9.260				EWS (-)	Not EWS

Red: both sets

Black: Khan set only

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation -Initialization(1)

```
'Leave-One-Out Neural Network Analysis of Khan Data'
   Neural Network with Vector Output
જ
   Based on 63 Samples of 8 Positive and Negative t-Value Metagenes
ş
8
   12/5/2007
    clear
    Target = [ones(1,23) \ zeros(1,40)
       zeros(1,23) ones(1,8) zeros(1,32)
       zeros(1,31) ones(1,12) zeros(1,20)
       zeros(1,43) ones(1,20)];
   TrainingData = [2.489 2.725 2.597 2.831 ...
       . . . . .
       . . . . .
        . . . . .
        . . . . .
       . . . . .
       . . . . .
        ....];
        . . . . .
```

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation - Initialization(2)

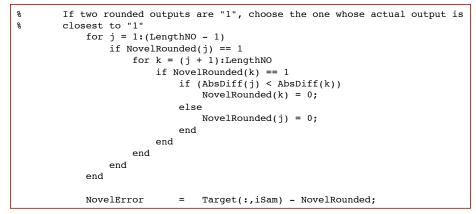
```
% Validation Sample and Leave-One-Out Training Set
MisClass = 0;
iSamLog = [];
iRepLog = [];
ErrorLog = [];
OutputLog = [];
SizeTarget = size(Target);
SizeTD = size(TrainingData);
% Preprocessing of Training Data
[TrainingData,minp,maxp,tn,mint,maxt] = premnmx(TrainingData,Target);
```

premnmx has been replaced by mapminmax in MATLAB

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation - Initialization(3)

<pre>for iSam = 1:SizeTD(2)</pre>		
ValidSample	=	<pre>TrainingData(:,iSam);</pre>
ReducedData	=	TrainingData;
ReducedData(:,iSam)	=	[];
ReducedTarget	=	Target;
ReducedTarget(:,iSam)	=	[];
Repeats	=	2;

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation -Training(1)

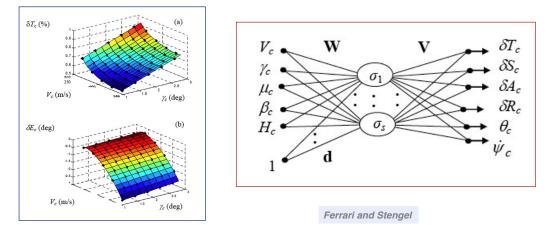

<pre>for i = 1:Repeat</pre>	S		
Rang	e = n	minmax(Reduce	edData);
Neur	ons =	[12,4];	
Node	s = {	{'logsig', 'p	<pre>ourelin'};</pre>
Beta	= 0	.5;	
Epoc	hs = 2	200;	
Trai	ner =	'trainbr';	
Net	= r	newff(Range,N	<pre>Neurons,Nodes,Trainer);</pre>
Net.	trainPara	am.show =	= 100;
Net.	trainPara	am.lr =	Beta;
Net.	trainPara	am.epochs =	= Epochs;
Net.	trainPara	am.goal =	= 0.001;
[Net	,Training	gRecord] =	<pre>train(Net,ReducedData,ReducedTarget);</pre>
NetC	utput =	= sim(Net,	ReducedData);
Roun	ded =	<pre>= round(Net</pre>	COutput);
Errc	r =	= ReducedTa	arget - Rounded;ar

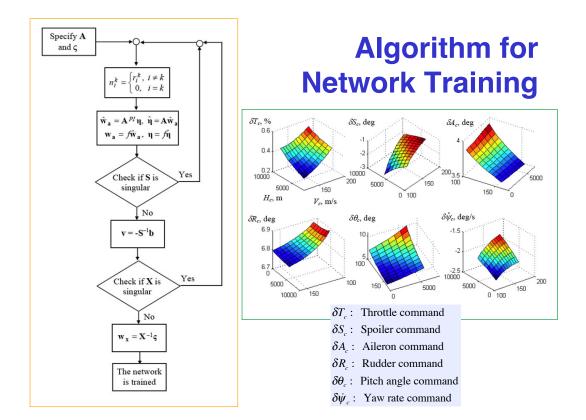
Check calling sequence of *newff*

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation -Training(2)

Q.	Validation with Single Sample
	<pre>NovelOutput = sim(Net,ValidSample); LengthNO = length(NovelOutput); NovelRounded = round(NovelOutput); NovelRounded = max(NovelRounded,zeros(LengthNO,1)); NovelRounded = min(NovelRounded,ones(LengthNO,1));</pre>
	If no actual output is greater than 0.5, choose the largest for k = 1:SizeNO(2)
	<pre>if (isequal(NovelRounded,zeros(LengthNO,1))) [c,j] = max(NovelOutput); NovelRounded(j,1) = 1; end</pre>
	AbsDiff = abs(NovelOutput - NovelRounded);-

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation -Training(3)


MATLAB Program for Neural Network Analysis with Leave-One-Out Validation - Training(4)


	if	Mis(iSan iRep Erro	equal Class nLog pLog prLog putLog	·	ovelE = = = = =	<pre>rror,zeros(LengthNO,1))) MisClass + 1; [iSamLog iSam]; [iRepLog i]; [ErrorLog NovelError]; [OutputLog NovelOutput];</pre>
end						
end						
MisClass iSamLog iRepLog ErrorLog OutputLog	3					
Trials		=	iSam	*	Repe	ats

Algebraic Training of a Neural Network

Algebraic Training for Exact Fit to a Smooth Function

- Smooth functions define equilibrium control settings at many operating points
- Neural network required to fit the functions

Results for Network Training

- 45-node example
- Algorithm is considerably faster than search methods

Algorithm:	Time (Scaled):	Flops:	Lines of code (MATLAB [®]):	Epochs:	Final error:
Algebraic	1	$2 imes 10^5$	8	1	0
Levenberg- Marquardt	50	5×10^7	150	6	10 ⁻²⁶
Resilient Backprop.	150	1×10^7	100	150	0.006