Neural Networks - 1

Robert Stengel

Robotics and Intelligent Systems, MAE 345, Princeton University, 2013

Learning Objectives

- Natural and artificial neurons
- Natural and computational neural networks
- Linear network
- Perceptron
- Sigmoid network
- Applications of neural networks
- Supervised training
- Left pseudoinverse
- Steepest descent
- Back-propagation

- Exact algebraic fit

Applications of Computational Neural Networks

- Classification of data sets
- Nonlinear function approximation
- Efficient data storage and retrieval
- System identification
- Nonlinear and adaptive control systems

Neurons

> | Biological cells with |
| :--- |
| significant electrochemical |
| activity |
| ~10-100 billion neurons in |
| the brain |
| - Inputs from thousands of |
| other neurons |
| Output is scalar, but may |
| have thousands of branches |

- Afferent (unipolar) neurons send signals from organs and the periphery to the central nervous system
- Efferent (multipolar) neurons issue commands from the CNS to effector (e.g., muscle) cells
- Interneurons (multipolar) send signals between neurons in the central nervous system
- Signals are ionic, i.e., chemical (neurotransmitter atoms and molecules) and electrical (potential)

Activation Input to Soma Causes Change in Output Potential

- Stimulus from
- Other neurons
- Muscle cells
- Pacemakers (c.g. cardiac sinoatrial node)
- When membrane potential of neuronal cell exceeds a threshold
- Cell is polarized
- Action potential pulse is transmitted from the cell
- Activity measured by amplitude and firing frequency of pulses
- Cell depolarizes and potential returns to rest

Some Recorded Action Potential Pulse Trains

Impulse, Pulse-Train, and Step Response of a LTI $2^{\text {nd }}-O r d e r$ Neural Model

Multipolar Neuron

Mathematical Model of Neuron Components

Synapse effects represented by weights (gains or multipliers)
 Neuron firing frequency is modeled by linear gain or nonlinear element

The Neuron Function

- Vector input, u, to a single neuron
- Sensory input or output from upstream neurons
- Linear operation produces scalar, r
- Add bias, b, for zero adjustment
- Scalar output, u, of a single neuron (or node)
- Scalar linear or nonlinear operation, $\boldsymbol{s}(r)$

$$
r=\mathbf{w}^{T} \mathbf{u}+b
$$

$$
u=s(r)
$$

Layout of a Neural Network

Input Layer Hidden Layer
$\mathbf{x}=\mathbf{u}_{\mathbf{0}} \quad \mathrm{W}_{1} \quad \mathrm{r}_{1} \quad \mathbf{s}_{\mathbf{1}}\left(\mathrm{r}_{\mathbf{1}}\right) \quad \mathbf{u}_{1} \quad \mathrm{~W}_{2}$

Input-Output Characteristics of a Neural Network Layer

- Single layer

- Number of inputs $=n$
- $\operatorname{dim}(u)=(n \times 1)$
- Number of nodes $=m$
- $\operatorname{dim}(r)=\operatorname{dim}(b)=\operatorname{dim}(s)=(m \times 1)$

$$
\begin{aligned}
& \mathbf{r}=\mathbf{W} \mathbf{u}+\mathbf{b} \\
& \mathbf{u}=\mathbf{s}(\mathbf{r})
\end{aligned}
$$

$\mathbf{W}=\left[\begin{array}{c}\mathbf{w}_{1}^{T} \\ \mathbf{w}_{2}^{T} \\ \\ \mathbf{w}_{n}^{T}\end{array}\right]$

Two-Layer Network

- Two layers

- Number of nodes in each layer need not be the same
- Node functions may be different, e.g.,
- Sigmoid hidden layer
- Linear output layer

$$
\begin{aligned}
\mathbf{y} & =\mathbf{u}_{2} \\
& =\mathbf{s}_{2}\left(\mathbf{r}_{2}\right)=\mathbf{s}_{2}\left(\mathbf{W}_{2} \mathbf{u}_{1}+\mathbf{b}_{2}\right) \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{r}_{1}\right)+\mathbf{b}_{2}\right] \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{W}_{1} \mathbf{u}_{0}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right] \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right]
\end{aligned}
$$

Is a Neural Network Serial or Parallel?

$3^{\text {rd-degree power series }}$ 4 coefficients
Express as a neural network?

$$
\begin{aligned}
y & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
& =a_{0}{ }^{\prime}+a_{1}{ }^{\prime} r+a_{2}{ }^{\prime} r^{2}+a_{3}{ }^{\prime} r^{3} \\
& =a_{0}{ }^{\prime}+a_{1}{ }^{\prime}\left(c_{1} x+b_{1}\right)+a_{2}{ }^{\prime}\left(c_{1} x+b_{2}\right)^{2}+a_{3}{ }^{\prime}\left(c_{1} x+b_{3}\right)^{3} \\
& =w_{0}+w_{1} s_{1}(u)+w_{2} s_{2}(u)+w_{3} s_{3}(u)
\end{aligned}
$$

Is a Neural Network Serial or Parallel?

Power series is serial, but it can be expressed as a parallel neural network (with dissimilar nodes)

MATLAB Neural Network Toolbox

- Implementation of many neural network architectures
- Common calling sequences
- Pre- and postprocessing
- Command-line and GUI

MATLAB Training and Evaluation of "Backpropagation" Neural Networks

- Backpropagation (Ch. 5)
- Preprocessing to normalize data (5-62)
- Architecture (5-8)
- Simulation (5-14)
- Training algorithms (5-15, 5-52)

- Outputs provide linear scaling of inputs
- Equivalent to matrix transformation of a vector, $\mathbf{y}=\mathbf{W x}+\mathbf{b}$
- Therefore, linear network is easy to train (left pseudoinverse)
- MATLAB symbology

Idealizations of Nonlinear Neuron Input-Output Characteristic

Step function ("Perceptron")

Logistic sigmoid function

Sigmoid with two inputs, one output

Perceptron Neural Network

Where...
R = \# Inputs
S = \# Neurons
Each node is a step function
Weighted sum of features is fed to each node
Each node produces a linear classification of the input space

Single-Layer, Single-Node Perceptron Discriminants

$$
u=s\left(\mathbf{w}^{T} \mathbf{x}+b\right)=\left\{\begin{array}{cc}
1, & \left(\mathbf{w}^{T} \mathbf{x}+b\right)>0 \\
0, & \left(\mathbf{w}^{T} \mathbf{x}+b\right) \leq 0
\end{array}\right.
$$

Two inputs, single step function
Discriminant

$$
\begin{aligned}
& w_{1} x_{1}+w_{2} x_{2}+b=0 \\
& \text { or } \quad x_{2}=\frac{-1}{w_{2}}\left(w_{1} x_{1}+b\right)
\end{aligned}
$$

$$
\mathbf{x}=\left\lfloor\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\rfloor
$$

Three inputs, single step function
Discriminant

$$
\begin{aligned}
& w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b=0 \\
& \text { or } \quad x_{3}=\frac{-1}{w_{3}}\left(w_{1} x_{1}+w_{2} x_{2}+b\right)
\end{aligned}
$$

Single-Layer, Multi-Node Perceptron Discriminants

$$
\mathbf{u}=\mathbf{s}(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

- Multiple inputs, nodes, and outputs
- More inputs lead to more dimensions in discriminants
- More outputs lead to more discriminants

Multi-Layer Perceptrons Can Classify With Boundaries or Clusters

Classification capability of multi-layer perceptrons Classifications of classifications

Open or closed regions

STRUCTURE | TYPES OF |
| :---: |
| SINGISION REGIONS | (EXCLUSIVE OR

Sigmoid Activation Functions

- Alternative sigmoid functions
- Logistic function: 0 to 1

$$
u=s(r)=\frac{1}{1+e^{-r}}
$$

- Hyperbolic tangent: -1 to 1
- Augmented ratio of squares: 0 to 1

$$
u=s(r)=\tanh r=\frac{1-e^{-2 r}}{1+e^{-2 r}}
$$

- Smooth nonlinear functions

$$
u=s(r)=\frac{r^{2}}{1+r^{2}}
$$

Sigmoid Neural Network

Where...
R = \# Inputs
S = \# Neurons

Single Sigmoid Layer is Sufficient ...

- Sigmoid network with single hidden layer can approximate any continuous function
- Therefore, additional sigmoid layers are unnecessary
- Typical sigmoid network contains
- Single sigmoid hidden layer (nonlinear fit)
- Single linear output layer (scaling)

Typical Sigmoid Neural Network Output

Classification is not limited to linear discriminants

Sigmoid network can approximate a continuous nonlinear function to arbitrary accuracy with a single hidden layer

Threshold gives "yes/no" output

Training Error and Cost for a Single Linear Neuron

- Training error: difference between network output and target output
- Quadratic error cost

$$
\begin{gathered}
\varepsilon=\hat{y}-y_{T} \\
J=\frac{1}{2} \varepsilon^{2}=\frac{1}{2}\left(\hat{y}-y_{T}\right)^{2}=\frac{1}{2}\left(\hat{y}^{2}-2 \hat{y} y_{T}+y_{T}^{2}\right)
\end{gathered}
$$

Linear Neuron Gradient

$$
\begin{array}{lc}
\hat{y}=r=\mathbf{w}^{T} \mathbf{x}+b & \varepsilon=\hat{y}-y_{T} \\
\frac{d \hat{y}}{d r}=1 & J=\frac{1}{2} \varepsilon^{2}=\frac{1}{2}\left(\hat{y}-y_{T}\right)^{2}=\frac{1}{2}\left(\hat{y}^{2}-2 \hat{y} y_{T}+y_{T}{ }^{2}\right)
\end{array}
$$

- Training (control) parameter, p
- Input weights, w ($n \times 1$)
- Bias, $\boldsymbol{b}(1 \times 1)$
- Optimality condition $\frac{\partial J}{\partial \mathbf{p}}=\mathbf{0}$

$$
\mathbf{p}=\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{n+1}
\end{array}\right]
$$

- Gradient

$$
\left.\left.\begin{array}{c}
\frac{\partial J}{\partial \mathbf{p}}=\left(\hat{y}-y_{T}\right) \frac{\partial y}{\partial \mathbf{p}}=\left(\hat{y}-y_{T}\right) \frac{\partial y}{\partial r} \frac{\partial r}{\partial \mathbf{p}} \\
\frac{\partial r}{\partial \mathbf{p}}=\left[\begin{array}{lll}
\frac{\partial r}{\partial p_{1}} & \frac{\partial r}{\partial p_{2}} & \cdots
\end{array} \frac{\frac{\partial r}{\partial p_{n+1}}}{\text { where }}\right.
\end{array}\right]=\frac{\partial\left(\mathbf{w}^{T} \mathbf{x}+b\right)}{\partial \mathbf{p}}=\left[\begin{array}{ll}
\mathbf{x}^{T} & 1
\end{array}\right]\right]
$$

Steepest-Descent Learning for a Single Linear Neuron

Gradient

$$
\frac{\partial J}{\partial \mathbf{p}}=\left(\hat{y}-y_{T}\right)\left[\begin{array}{ll}
\mathbf{x}^{T} & 1
\end{array}\right]=\left[\left(\mathbf{w}^{T} \mathbf{x}+b\right)-y_{T}\right]\left[\begin{array}{ll}
\mathbf{x}^{T} & 1
\end{array}\right]
$$

Steepest-descent algorithm

$$
\begin{aligned}
& \eta=\text { learning rate } \\
& k=\text { iteration index(epoch) }
\end{aligned}
$$

$$
\mathbf{p}_{k+1}=\mathbf{p}_{k}-\eta\left(\frac{\partial J}{\partial \mathbf{p}}\right)_{k}^{T}=\mathbf{p}_{k}-\eta\left(\hat{y}_{k}-y_{T_{k}}\right)\left[\begin{array}{c}
\mathbf{x}_{k} \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k+1}=\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k}-\eta\left[\left(\mathbf{w}_{k}^{T} \mathbf{x}_{k}+b_{k}\right)-y_{T_{k}}\right]\left[\begin{array}{c}
\mathbf{x}_{k} \\
1
\end{array}\right]
$$

Backpropagation for a Single Linear Neuron

- Training set (n members)
- Target outputs, $\mathrm{y}_{\mathrm{T}}(1 \times n)$
- Feature set, X ($m \times n$)

$$
\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k+1}=\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k}-\eta\left[\left(\mathbf{w}_{k}^{T} \mathbf{x}_{k}+b_{k}\right)-y_{T_{k}}\right]\left[\begin{array}{c}
\mathbf{x}_{k} \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\mathbf{y}_{T} \\
\mathbf{X}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{y}_{T_{1}} & \mathbf{y}_{T_{2}} & \ldots & \mathbf{y}_{T_{n}} \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n}
\end{array}\right]
$$

- Initialize w and b
- Random set
- Prior training result
- Estimate w and b recursively
- Off line (random or repetitive sequence)
- On line (measured training features and target)
- ... until $\partial \mathrm{J} / \partial \mathrm{p} \sim 0$

- Neuron output is discontinuous
$y=s(r)= \begin{cases}1, & r>0 \\ 0, & r \leq 0\end{cases}$
- Binary target output
- $y_{T}=0$ or 1 , for classification

$$
\left(\hat{y}_{k}-y_{T_{k}}\right)=\left\{\begin{array}{rc}
1, & y_{k}=1, \quad y_{T_{k}}=0 \\
0, & y_{k}=y_{T_{k}} \\
-1, & y_{k}=0, \quad y_{T_{k}}=1
\end{array}\right.
$$

Steepest-Descent Algorithm for a SingleStep Perceptron

Training Variables for a Single Sigmoid Neuron

Input-output characteristic and $1^{\text {st }}$ derivative

$$
\begin{aligned}
& y=s(r)=\frac{1}{1+e^{-r}} \\
& \text { Training error and } \\
& \text { quadratic error cost } \\
& \varepsilon=\hat{y}-y_{T} \\
& \begin{aligned}
& \frac{d y}{d r}=\frac{d s(r)}{d r}=\frac{e^{-r}}{\left(1+e^{-r}\right)^{2}}=e^{-r} s^{2}(r) \\
&=\left[\left(1+e^{-r}\right)-1\right] s^{2}(r)=\left(\frac{1}{2}-1\right) s^{2}(r) \text { Control parameter } \\
&=\left[\frac{1-s(r)}{s(r)}\right] s^{2}(r)=[1-s(r)] s(r)=(1-y) y \\
&
\end{aligned}
\end{aligned}
$$

Training a Single Sigmoid Neuron

Backpropagation

$$
\begin{gathered}
\frac{\partial J}{\partial \mathbf{p}}=\left(\hat{y}-y_{T}\right) \frac{\partial y}{\partial \mathbf{p}}=\left(\hat{y}-y_{T}\right) \frac{\partial \hat{y}}{\partial r} \frac{\partial r}{\partial \mathbf{p}} \\
\text { where } \\
r=\mathbf{w}^{T} \mathbf{x}+b \\
\frac{d \hat{y}}{d r}=(1-\hat{y}) \hat{y} \\
\frac{\partial r}{\partial \mathbf{p}}=\left[\begin{array}{ll}
\mathbf{x}^{T} & 1
\end{array}\right] \\
\frac{\partial J}{\partial \mathbf{p}}=\left(\hat{y}-y_{T}\right)(1-\hat{y}) \hat{y}\left[\begin{array}{ll}
\mathbf{x}^{T} & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{p}_{k+1}=\mathbf{p}_{k}-\eta\left(\frac{\partial J}{\partial \mathbf{p}}\right)_{k}^{T} \\
o r
\end{gathered}
$$

$$
\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k+1}=\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k}-\eta\left(\hat{y}_{k}-y_{T}\right)(1-\hat{y}) \hat{y}_{k}\left[\begin{array}{c}
\mathbf{x}_{k} \\
1
\end{array}\right]
$$

Two parameter vectors for 2-layer network

$$
\mathbf{p}_{1,2}=\left[\begin{array}{l}
\mathbf{w} \\
b
\end{array}\right]_{1,2}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{n+1}
\end{array}\right]_{1,2}
$$

Training a Sigmoid Network

Output vector

$$
\begin{gathered}
\hat{\mathbf{y}}=\mathbf{u}_{2} \\
=\mathbf{s}_{2}\left(\mathbf{r}_{2}\right)=\mathbf{s}_{2}\left(\mathbf{W}_{2} \mathbf{u}_{1}+\mathbf{b}_{2}\right) \\
=\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{r}_{1}\right)+\mathbf{b}_{2}\right] \\
=\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{W}_{1} \mathbf{u}_{0}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right] \\
=\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right]
\end{gathered}
$$

Training a Sigmoid Network

$$
\mathbf{p}_{1,2 k}=\mathbf{p}_{1,2 k}-\eta\left(\frac{\partial J}{\partial \mathbf{p}_{1,2}}\right)_{k}^{T}
$$

where

$$
\begin{aligned}
& \frac{\partial J}{\partial \mathbf{p}_{1,2}}=\left(\hat{\mathbf{y}}-\mathbf{y}_{T}\right) \frac{\partial \mathbf{y}}{\partial \mathbf{p}_{1,2}}=\left(\hat{\mathbf{y}}-\mathbf{y}_{T}\right) \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_{1,2}} \frac{\partial \mathbf{r}_{1,2}}{\partial \mathbf{p}_{1,2}} \\
& \text { where } \\
& \mathbf{r}_{1,2}=\mathbf{W}_{1,2} \mathbf{u}_{0,1}+\mathbf{b}_{1,2} \\
& \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_{2}}=\mathbf{I} ; \quad \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_{1}}=\left[\begin{array}{cccc}
\left(1-\hat{y}_{1}\right) \hat{y}_{1} & 0 & \ldots & 0 \\
0 & \left(1-\hat{y}_{2}\right) \hat{y}_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & 0 \\
0 & 0 & \ldots & \left(1-\hat{y}_{n}\right) \hat{y}_{n}
\end{array}\right] \\
& \frac{\partial \mathbf{r}_{1}}{\partial \mathbf{p}_{1}}=\left[\begin{array}{ll}
\mathbf{x}^{T} & 1
\end{array}\right] ; \frac{\partial \mathbf{r}_{2}}{\partial \mathbf{p}_{2}}=\left[\begin{array}{ll}
\mathbf{u}_{1}^{T} & 1
\end{array}\right]
\end{aligned}
$$

Small, Round Blue-Cell Tumor Classification Example

- Childhood cancers, including

Desmoplastic small, round blue-cell tumors

- Ewing' s sarcoma (EWS)
- Burkitt' s Lymphoma (BL)
- Neuroblastoma (NB)
- Rhabdomyosarcoma (RMS)
- cDNA microarray analysis
presented by J. Khan, et al.,
Nature Medicine, 2001, 673-679.
- 96 transcripts chosen from 2,308 probes for training
- 63 EWS, BL, NB, and RMS training samples
- Source of data for my analysis

Overview of Present SRBCT Analysis

- Transcript selection by ttest
- 96 transcripts, 12 highest and lowest t values for each class
- Overlap with Khan set: 32 transcripts
- Ensemble averaging of highest and lowest t values for each class
- Cross-plot of ensemble averages
- Classification by sigmoidal neural network
- Validation of neural network
- Novel set simulation
- Leave-one-out simulation

Clustering of SRBCT Ensemble Averages

SRBCT Neural Network

Neural Network Training Set

Each input row is an ensemble average for a transcript set, normalized in ($-1,+1$)

Identifier	Sample 1 EWS	Sample 2 EWS	Sample 3 EWS	...	Sample 62 RMS	Sample 63 RMS
Target Output						
	EWS (+)Average	EWS(+)Average	EWS(+)Average	...	EWS (+)Average	EWS (+)Average
	EWS(-)Average	EWS(-)Average	EWS(-)Average	...	EWS(-)Average	EWS(-)Average
Transcript Training Set	$B L(+)$ Average	$B L(+)$ Average	$B L(+)$ Average	...	BL(+)Average	BL(+)Average
	BL(-)Average	$B L(-)$ Average	BL(-)Average	...	BL $(-)$ Average	$B L(-)$ Average
	$N B(+)$ Average	$N B(+)$ Average	$N B(+)$ Average	...	NB(+)Average	$N B(+)$ Average
	$N B(-)$ Average	NB(-)Average	NB(-)Average	...	$N B(-)$ Average	$N B(-)$ Average
	RMS(+)Average	RMS(+)Average	RMS(+)Average	...	RMS(+)Average	RMS(+)Average
	RMS(-)Average	RMS(-)Average	RMS(-)Average	...	RMS(-)Average	RMS(-)Average

SRBCT Neural Network Training

- Neural network
- 8 ensemble-average inputs
- various \# of sigmoidal neurons
- 4 linear neurons
- 4 outputs
- Training accuracy
- Train on all 63 samples
- Test on all 63 samples
- 100\% accuracy

Leave-One-Out Validation of SRBCT Neural Network

- Remove a single sample
- Train on remaining samples (125 times)
- Evaluate class of the removed sample
- Repeat for each of 63 samples
- 6 sigmoids: 99.96% accuracy (3 errors in 7,875 trials)
- 12 sigmoids: 99.99\% accuracy (1 error in 7,875 trials)

Novel-Set Validation of SRBCT Neural Network

- Network always chooses one of four classes (i.e., "unknown" is not an option)
- Test on 25 novel samples (400 times each)
- 5 EWS
-5 BL
- 5 NB
- 5 RMS
- 5 samples of unknown class
- 99.96\% accuracy on first 20 novel samples (3 errors in 8,000 trials)
- 0\% accuracy on unknown classes

Observations of SRBCT Classification using Ensemble Averages

- t test identified strong features for classification in this data set
- Neural networks easily classified the four data types
- Caveat: Small, round blue-cell tumors occur in different tissue types
- Ewing' s sarcoma: Bone tissue
- Burkitt’ s Lymphoma: Lymph nodes
- Neuroblastoma: Nerve tissue
- Rhabdomyosarcoma: Soft tissue

Gene expression (i.e., mRNA) variation may be linked to tissue differences as well as tumor genetics

> Next Time: Neural Networks - 2

Supplementary Material

Impulse, Pulse-Train, and Step Response of a LTI $2^{\text {nd }}-O r d e r$ Neural Model

Cardiac Pacemaker and EKG Signals

Electrochemical Signaling at Axon Hillock and Synapse

Synaptic Strength Can Be Increased or Decreased by Externalities

- Synapses: learning elements of the nervous system
- Action potentials enhanced or inhibited
- Chemicals can modify signal transfer
- Potentiation of preand post-synaptic cells
- Adaptation/Learning (potentiation)
- Short-term
- Long-term

Microarray Training Set

$\left[\begin{array}{c}\text { Identifier } \\ \mathbf{y}_{T} \\ \mathbf{X}\end{array}\right]=\left[\begin{array}{cccccc}\text { Sample } 1 & \text { Sample } 2 & \text { Sample 3 } & \ldots & \text { Sample n-1 } & \text { Sample n } \\ \text { Tumor } & \text { Tumor } & \text { Tumor } & \ldots & \text { Normal } & \text { Normal } \\ \text { Gene A Level } & \text { Gene A Level } & \text { Gene A Level } & \ldots & \text { Gene A Level } & \text { Gene A Level } \\ \text { Gene B Level } & \text { Gene B Level } & \text { Gene B Level } & \ldots & \text { Gene B Level } & \text { Gene B Level } \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ \text { Gene m Level } & \text { Gene m Level } & \text { Gene m Level } & \ldots & \text { Gene m Level } & \text { Gene m Level }\end{array}\right]$

Microarray Training Data

- First row: Target classification
- $2^{\text {nd }}-5^{\text {th }}$ rows: Up-regulated genes
- $6^{\text {th }}-10^{\text {th }}$ rows: Down-regulated genes

Lab Analysis of Tissue Samples
Tumor $=[111111111111111111111111111$...
$111111111111100000000000000 \ldots$ 00000000 ;

Normalized Data: Up-Regulated in Tumor

U22055 =	[138	68	93	62	30	81	121	7	82	24	-2	-48	38	\ldots	
	82	118	55	103	102	87	62	69	14	101	25	47	48	75	...
	59	62	116	54	96	90	130	70	75	74	35	149	97	21	...
	14	-51	-3	-81	57	-4	16	28	-73	-4	45	-28	-9	-13	...
	25	25	19	-21	3	19	34];								
ormalized D	Up-	egula		Norm											
M96839 =	[3	-23	3	12	-22	0	4	29	-73	32	5	-13	-16	14	...
	2	24	18	19	9	-13	-20	-3	-22	6	-5	-12	9	28	...
	20	-9	30	-15	18	1	-16	12	-9	3	-35	23	3	5	...
	33	29	47	19	32	34	20	55	49	20	10	36	70	50	...
	15	45	56	41	31	40];									

Input Layer Hidden Layer Output Layer
$\begin{array}{lllllllll}\mathbf{x}=\mathbf{u}_{0} & W_{1} & r_{1} & \mathbf{s}_{1}\left(r_{1}\right) & u_{1} & W_{2} & r_{2} & \mathbf{s}_{2}\left(r_{2}\right) & u_{2}=\mathbf{y}\end{array}$

Neural Network Classification Example

- ~7000 genes expressed in 62 microarray samples
- Tumor = 1
- Normal = 0
- 8 genes in strong feature set
- 4 with Mean Tumor/Normal > 20:1
- 4 with Mean Normal/Tumor $>20: 1$
- and minimum variance within upregulated set

Dukes Stages: A ->B ->C ->D

Neural Network Training Results: Tumor/Normal Classification, 8 Genes, 4 Nodes

- Training begins with a random set of weights
- Adjustable parameters
- Learning rate
- Target error
- Maximum \# of epochs
- Non-unique sets of trained weights

Binary network output (0,1) after rounding

Zero classification errors

Neural Network Training Results: Tumor Stage/Normal Classification 8 Genes, 16 Nodes

- Colon cancer classification
- $0=$ Normal
- 1 = Adenoma
- 2 = A Tumor
- $3=$ B Tumor
- $4=$ C Tumor
- 5 = D Tumor

Target =

[2133333333
33333333334
44444444555 55555100000 00000000000 000000]

One classification error
Scalar network output with varying magnitude

Classification =
Columns 1 through 13

Ranking by EWS t Values (Top and Bottom 12)

- 24 transcripts selected from 12 highest and lowest t values for EWS vs. remainder

```
mage ID TranscriptS t Value
    scription
    770394 Fc fragment of IgG, receptor, transporter, alpha
    1 4 3 5 8 6 2 \text { antigen identified by monoclonal antibodies 12E7, F21 and O13}
    377461 caveolin 1, caveolae protein, 22kD
    377461 caveolin 1, caveolae protein, 22kD 
    491565 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain
    841641 cyclin D1 (PRAD1: parathyroid adenomatosis 1)
    8471841 ATP D1 (PRAD1. paramyroid adenomatosis 1)
    866702 protein tyrosine phosphatg, non-receptor type 13
    713922 protein tyrosine phosphatase,
    S-transferase M1
    3 0 8 4 9 7 \text { KIAA0467 protein}
    770868 NGFI-A binding protein 2 (ERG1 binding protein 2)
    345232 lymphotoxin alpha (TNF superfamily, member 1)
    786084 chromobox homolog }1\mathrm{ (Drosophila HP1 beta)
    796258 sarcoglycan, alpha (50kD dystrophin-associated glycoprotein)
    431397
    8 2 5 4 1 1 ~ N - a c e t y l g l u c o s a m i n e ~ r e c e p t o r ~ 1 ~ ( t h y r o i d ) ~
    8 5 9 3 5 9 \text { quinone oxidoreductase homolog}
    75254 cysteine and glycine-rich protein 2 (LIM domain only, smooth muscle)
    4 4 8 8 6
    68950 cyclin E1
    774502 protein tyrosine phosphatase, non-receptor type 12
    32820 inducible poly(A)-binding protein
    214572 ESTs
    295985 ESTS
```

EWS t Value	BL t Value	NB t Value	RMS t Value
12.04	-6.67	-6.17	-4.79
9.09	-6.75	-5.01	-4.03
8.82	-5.97	-4.91	-4.78
8.17	-4.31	-4.70	-5.48
7.60	-5.82	-2.62	-3.68
6.84	-9.93	0.56	-4.30
6.65	-3.56	-2.72	-4.69
6.54	-4.99	-4.07	-4.84
6.17	-5.61	-5.16	-1.97
5.99	-6.69	-6.63	-1.11
5.93	-6.74	-3.88	-1.21
5.61	-8.05	-2.49	-1.19
-5.04	-1.05	9.65	-0.62
-5.04	-3.31	-3.86	6.83
-5.04	2.64	2.19	0.64
-5.06	-1.45	5.79	0.76
-5.23	-7.27	0.78	5.40
-5.30	-4.11	2.20	3.68
-5.38	-0.42	3.76	0.14
-5.80	0.03	-1.58	5.10
-5.80	-5.56	3.76	3.66
-6.14	0.60	0.66	3.80
-6.39	-0.08	-0.22	4.56
-9.26	-0.13	3.24	2.95

Repeated for BL vs. remainder, NB vs. remainder, and RMS vs. remainder

Comparison of Present SRBCT Set with Khan Top 10

		EWS Student t Value	BL Student t Value	NB Student t Value	RMS Student t Value	Most Significant t Value	Khan Gene Class
Image ID	Gene Description insulin-like growth factor 2					t Value	Class
296448	(somatomedin A)	-4.789	-5.226	-1.185	5.998	RMS	RMS
	Human DNA for insulin-like growth factor II (IGF-2); exon						
207274	7 and additional ORF	-4.377	-5.424	-1.639	5.708	RMS	RMS
	cyclin D1 (PRAD1:						
841641	parathyroid adenomatosis 1)	6.841	-9.932	0.565	-4.300	BL (-)	EWS/NB
$\begin{aligned} & 365826 \\ & 486787 \end{aligned}$	growth arrest-specific 1	3.551	-8.438	-6.995	1.583	BL (-)	EWS/RMS
	calponin 3, acidic	-4.335	-6.354	2.446	2.605	BL (-)	RMS/NB
770394	Fc fragment of IgG, receptor, transporter, alpha	12.037	-6.673	-6.173	-4.792	EWS	EWS
244618	ESTs insulin-like growth factor	-4.174	-4.822	-3.484	5.986	RMS	RMS
23372143733	binding protein 2 (36kD)	0.058	-7.487	-1.599	2.184	BL (-)	Not BL
	glycogenin 2	4.715	-4.576	-3.834	-3.524	EWS	EWS
295985 ESTs		-9.260	-0.133	3.237	2.948	EWS (-)	Not EWS
- Red: both sets - Black: Khan set only							

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation Initialization(1)

```
'Leave-One-Out Neural Network Analysis of Khan Data'
% Neural Network with Vector Output
% Based on 63 Samples of 8 Positive and Negative t-Value Metagenes
% 12/5/2007
    clear
    Target = [ones(1,23) zeros(1,40)
        zeros(1,23) ones(1,8) zeros(1,32)
        zeros(1,31) ones(1,12) zeros(1,20)
        zeros(1,43) ones(1,20)];
    TrainingData = [2.489 2.725 2.597 2.831 \ldots
        .....
        .....
        .....
        .....
        .....
        .....];
        .....
```


MATLAB Program for Neural Network Analysis with Leave-One-Out Validation - Initialization(2)

```
% Validation Sample and Leave-One-Out Training Set
MisClass = 0;
iSamLog = [];
iRepLog = [];
ErrorLog = [];
OutputLog = [];
SizeTarget = size(Target);
SizeTD = size(TrainingData);
% Preprocessing of Training Data
[TrainingData,minp,maxp,tn,mint,maxt] = premnmx(TrainingData,Target);
```

premnmx has been replaced by mapminmax in MATLAB

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation - Initialization(3)

for iSam $=1:$ SizeTD (2)		
ValidSample	$=$ TrainingData(:,iSam);	
ReducedData	$=$ TrainingData;	
ReducedData(:,iSam)	$=[] ;$	
ReducedTarget	$=$ Target;	
ReducedTarget $(:$, iSam $)$	$=[] ;$	
Repeats	$=2 ;$	

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation Training(1)

Check calling sequence of newff

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation Training(2)

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation Training(3)

```
% If two rounded outputs are "1", choose the one whose actual output is
% closest to "1"
    for j = 1:(LengthNO - 1)
            if NovelRounded(j) == 1
            for k = (j + 1):LengthNO
                        if NovelRounded(k) == 1
                            if (AbsDiff(j) < AbsDiff(k))
                NovelRounded(k) = 0;
                    else
                                    NovelRounded(j) = 0;
                    end
                    end
            end
            end
    end
    NovelError = Target(:,iSam) - NovelRounded;
```


MATLAB Program for Neural Network Analysis with Leave-One-Out Validation
 - Training(4)

Algebraic Training of a Neural Network

Algebraic Training for Exact Fit to a Smooth Function

- Smooth functions define equilibrium control settings at many operating points
- Neural network required to fit the functions

Ferrari and Stengel

Algorithm for Network Training

Results for Network Training

- 45-node example
- Algorithm is considerably faster than search methods

Algorithm:	Time (Scaled):	Flops:	Lines of code (MATLAB):	Epochs:	Final error:
Algebraic	1	2×10^{5}	8	1	0
Levenberg- Marquardt	50	5×10^{7}	150	6	10^{-26}
Resilient Backprop.	150	1×10^{7}	100	150	0.006

