
Neural Networks - 1  
Robert Stengel 

 Robotics and Intelligent Systems,
MAE 345, Princeton University, 2013"

•  Natural and artificial neurons"
•  Natural and computational neural

networks"
–  Linear network"
–  Perceptron"
–  Sigmoid network"

•  Applications of neural networks"
•  Supervised training"

–  Left pseudoinverse"
–  Steepest descent"
–  Back-propagation"
–  Exact algebraic fit"

Copyright 2013 by Robert Stengel. All rights reserved. For educational use only.!
http://www.princeton.edu/~stengel/MAE345.html!

Learning Objectives!

Applications of
Computational
Neural Networks"
•  Classification of data sets"
•  Nonlinear function approximation"

•  Efficient data storage and retrieval"
•  System identification"

•  Nonlinear and adaptive control systems"

Neurons"

•  Afferent (unipolar) neurons send signals from organs and the
periphery to the central nervous system"

•  Efferent (multipolar) neurons issue commands from the CNS to
effector (e.g., muscle) cells"

•  Interneurons (multipolar) send signals between neurons in the
central nervous system"

•  Signals are ionic, i.e., chemical (neurotransmitter atoms and
molecules) and electrical (potential)"

•  Biological cells with
significant electrochemical
activity"

•  ~10-100 billion neurons in
the brain"

•  Inputs from thousands of
other neurons"

•  Output is scalar, but may
have thousands of branches"

Activation Input to Soma Causes
Change in Output Potential"

•  Stimulus from"
–  Other neurons"
–  Muscle cells"
–  Pacemakers (c.g. cardiac sino-

atrial node)"
•  When membrane potential of

neuronal cell exceeds a threshold"
–  Cell is polarized"
–  Action potential pulse is

transmitted from the cell"
–  Activity measured by amplitude

and firing frequency of pulses"
•  Cell depolarizes and potential

returns to rest"

Neural Action
Potential"

•  Maximum Firing Rate: 500/sec"
•  Refractory Period: Minimum

time increment between
action potential firing ~ 1-2
msec"

Some Recorded Action Potential
Pulse Trains "

Impulse, Pulse-Train, and Step Response
of a LTI 2nd-Order Neural Model "

Neglecting absolute
refractory period"

In the limit, neglecting
absolute refractory period"

Multipolar Neuron"

Mathematical Model of
Neuron Components"

w11"

w12"

w13"

w21"

w22"

w23"

Synapse effects represented by weights
(gains or multipliers)"

Neuron firing frequency is modeled by
linear gain or nonlinear element"

The Neuron Function"

•  Vector input, u, to a single neuron"
–  Sensory input or output from upstream

neurons"
–  Linear operation produces scalar, r"
–  Add bias, b, for zero adjustment"

•  Scalar output, u, of a single neuron (or
node)"
–  Scalar linear or nonlinear operation, s(r)"

r = wTu + b
u = s r()

Layout of a
Neural Network"

Layered, parallel structure
for computation"

Input-Output
Characteristics of a

Neural Network Layer"

•  Single layer"
–  Number of inputs = n!

•  dim(u) = (n x 1)"
–  Number of nodes = m!

•  dim(r) = dim(b) = dim(s) = (m x 1)"

r =Wu + b
u = s r()

W =

w1
T

w2
T

wn
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Two-Layer Network"
•  Two layers"

–  Number of nodes in each layer need
not be the same"

–  Node functions may be different, e.g.,"
•  Sigmoid hidden layer"
•  Linear output layer"

y = u2
= s2 r2() = s2 W2u1 + b2()
= s2 W2 s1 r1() + b2⎡⎣ ⎤⎦
= s2 W2 s1 W1u0 + b1() + b2⎡⎣ ⎤⎦
= s2 W2 s1 W1x + b1() + b2⎡⎣ ⎤⎦

Is a Neural Network
Serial or Parallel?"

3rd-degree power series"
4 coefficients"

Express as a neural network?"

y = a0 + a1x + a2x
2 + a3x

3

= a0 '+ a1 'r + a2 'r
2 + a3 'r

3

= a0 '+ a1 ' c1x + b1() + a2 ' c1x + b2()2 + a3 ' c1x + b3()3
= w0 + w1s1 u() + w2s2 u() + w3s3 u()

Is a Neural Network
Serial or Parallel?"

Power series is serial, but it can be expressed as a
parallel neural network (with dissimilar nodes)"

MATLAB Neural Network Toolbox "

•  Implementation of
many neural network
architectures"

•  Common calling
sequences"

•  Pre- and post-
processing"

•  Command-line and GUI"

MATLAB Training and Evaluation of
�Backpropagation� Neural Networks "

!  Backpropagation (Ch. 5)"
!  Preprocessing to normalize data (5-62)"
!  Architecture (5-8)"
!  Simulation (5-14)"
!  Training algorithms (5-15, 5-52) "

Linear Neural Network"

•  Outputs provide linear scaling of inputs"
•  Equivalent to matrix transformation of a vector, y = Wx + b"
•  Therefore, linear network is easy to train (left pseudoinverse)"
•  MATLAB symbology"

Idealizations of Nonlinear Neuron
Input-Output Characteristic"

Sigmoid with two inputs, one
output"

Logistic sigmoid function"

Step function (�Perceptron�)"

u = s(r) =
1, r > 0
0, r ≤ 0

⎧
⎨
⎪

⎩⎪

u = s(r) = 1
1+ e−r u = s(r) = 1

1+ e− w1r1 +w2r2 +b()

Perceptron Neural Network"

Each node is a step function"
Weighted sum of features is fed to each node"

Each node produces a linear classification of the input space"

Perceptron Neural
Network"

Weights adjust slopes"
Biases adjust zero crossing points"

Single-Layer, Single-Node
Perceptron Discriminants"

Two inputs, single step function"
Discriminant"

Three inputs, single step function"
Discriminant"

�

x =
x1
x2

⎡

⎣
⎢

⎤

⎦
⎥

�

x =
x1
x2
x3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

w1x1 + w2x2 + b = 0

or x2 = −1
w2

w1x1 + b()

�

w1x1 + w2x2 + w3x3 + b = 0

or x3 = −1
w3

w1x1 + w2x2 + b()

u = s(wTx + b) =
1, (wTx + b) > 0
0, (wTx + b) ≤ 0

⎧
⎨
⎪

⎩⎪

Single-Layer, Multi-Node
Perceptron Discriminants"

�

x =
x1
x2
x3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

�

x =
x1
x2

⎡

⎣
⎢

⎤

⎦
⎥

•  Multiple inputs, nodes, and outputs"
–  More inputs lead to more dimensions in

discriminants"
–  More outputs lead to more discriminants"

u = s(Wx + b)

Multi-Layer Perceptrons Can Classify
With Boundaries or Clusters "

Classification capability of multi-layer perceptrons"
Classifications of classifications"

Open or closed regions"

Sigmoid Activation
Functions"

!  Alternative sigmoid functions"
!  Logistic function: 0 to 1"
!  Hyperbolic tangent: –1 to 1"
!  Augmented ratio of squares: 0

to 1"
!  Smooth nonlinear functions"

u = s(r) = 1
1+ e−r

u = s(r) = tanh r = 1− e
−2r

1+ e−2r

u = s(r) = r2

1+ r2

Sigmoid Neural
Network"

Single Sigmoid Layer
is Sufficient …"

!  Sigmoid network with single hidden layer can
approximate any continuous function"

!  Therefore, additional sigmoid layers are
unnecessary"

!  Typical sigmoid network contains"
!  Single sigmoid hidden layer (nonlinear fit)"
!  Single linear output layer (scaling)"

Typical Sigmoid Neural
Network Output"

Classification is not limited to linear discriminants"

Sigmoid network can approximate a continuous nonlinear
function to arbitrary accuracy with a single hidden layer"

Thresholded Neural
Network Output"

Threshold gives �yes/no� output"

Training Error and Cost for a
Single Linear Neuron"

ε = ŷ − yT

J = 1
2
ε 2 = 1

2
ŷ − yT()2 = 1

2
ŷ2 − 2 ŷ yT + yT

2()

•  Training error: difference between
network output and target output"

•  Quadratic error cost"

ŷ = r = ŵTx + b̂

Linear Neuron Gradient "

•  Training (control) parameter, p"
–  Input weights, w (n x 1)"
–  Bias, b (1 x 1)"

•  Optimality condition"

•  Gradient"

p = w
b

⎡

⎣
⎢

⎤

⎦
⎥ =

p1
p2
...
pn+1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥∂J

∂p
= 0

∂ J
∂p

= ŷ − yT() ∂ y
∂p

= ŷ − yT()∂ y
∂ r

∂ r
∂p

where

∂ r
∂p

= ∂ r
∂ p1

∂ r
∂ p2

... ∂ r
∂ pn+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
∂ wTx + b()

∂p
= xT 1⎡⎣ ⎤⎦

ŷ = r = wTx + b
dŷ
dr

= 1

ε = ŷ − yT

J = 1
2
ε 2 = 1

2
ŷ − yT()2 = 1

2
ŷ2 − 2 ŷ yT + yT

2()

Steepest-Descent
Learning for a Single

Linear Neuron"

Steepest-descent
algorithm"

∂J
∂p

= ŷ − yT() xT 1⎡⎣ ⎤⎦ = wTx + b() − yT⎡⎣ ⎤⎦ xT 1⎡⎣ ⎤⎦

Gradient"

pk+1 = pk −η
∂ J
∂p

⎛
⎝⎜

⎞
⎠⎟ k

T

= pk −η ŷk − yTk() xk
1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

η = learning rate
k = iteration index(epoch)

w
b

⎡

⎣
⎢

⎤

⎦
⎥
k+1

= w
b

⎡

⎣
⎢

⎤

⎦
⎥
k

−η wk
Txk + bk()− yTk⎡⎣ ⎤⎦

xk
1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Backpropagation for a
Single Linear Neuron"

•  Training set (n members)"
–  Target outputs, yT (1 x n)"
–  Feature set, X (m x n)"

yT
X

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

yT1 yT2 ... yTn
x1 x2 ... xn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w
b

⎡

⎣
⎢

⎤

⎦
⎥
k+1

= w
b

⎡

⎣
⎢

⎤

⎦
⎥
k

−η wk
Txk + bk() − yTk⎡⎣ ⎤⎦

xk
1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

•  Initialize w and b"
–  Random set"
–  Prior training result"

•  Estimate w and b
recursively"
–  Off line (random or

repetitive sequence)"
–  On line (measured

training features and
target)"

•  … until ∂J/∂p ~ 0"

Steepest-Descent
Algorithm for a Single-

Step Perceptron"
•  Neuron output is

discontinuous" w
b

⎡

⎣
⎢

⎤

⎦
⎥
k+1

= w
b

⎡

⎣
⎢

⎤

⎦
⎥
k

−η ŷk − yTk⎡⎣ ⎤⎦
xk
1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

•  Binary target output"
•  yT = 0 or 1, for

classification"

ŷk − yTk() =
1,
0,

−1,

yk = 1, yTk = 0

yk = yTk
yk = 0, yTk = 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

y = s(r) =
1, r > 0
0, r ≤ 0

⎧
⎨
⎪

⎩⎪

yT
X

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

yT1 yT2 ... yTn
x1 x2 ... xn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Training Variables for a
Single Sigmoid Neuron"

y = s(r) = 1
1+ e−r

Input-output characteristic and 1st derivative"

p = w
b

⎡

⎣
⎢

⎤

⎦
⎥ =

p1
p2
...
pn+1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Training error and
quadratic error cost"

Control parameter"

dy
dr

= ds(r)
dr

= e−r

1+ e−r()2
= e−rs2 (r)

= 1+ e−r()−1⎡⎣ ⎤⎦ s
2 (r) = 1

s(r)
−1⎛

⎝⎜
⎞
⎠⎟
s2 (r)

= 1− s(r)
s(r)

⎡
⎣⎢

⎤
⎦⎥
s2 (r) = 1− s(r)[]s(r) = 1− y()y

ε = ŷ − yT

J = 1
2
ε 2 = 1

2
ŷ − yT()2 = 1

2
ŷ2 − 2 ŷ yT + yT

2()

Training a Single
Sigmoid Neuron"

∂J
∂p

= ŷ − yT() 1− ŷ() ŷ xT 1⎡⎣ ⎤⎦

pk+1 = pk −η
∂ J
∂p

⎛
⎝⎜

⎞
⎠⎟ k

T

or

∂ J
∂p

= ŷ − yT() ∂ y
∂p

= ŷ − yT()∂ ŷ
∂ r

∂ r
∂p

where
r = wTx + b
dŷ
dr

= 1− ŷ() ŷ
∂ r
∂p

= xT 1⎡⎣ ⎤⎦

w
b

⎡

⎣
⎢

⎤

⎦
⎥
k+1

= w
b

⎡

⎣
⎢

⎤

⎦
⎥
k

−η ŷk − yT() 1− ŷ() ŷk
xk
1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Training a
Sigmoid Network"

p1,2 =
w
b

⎡

⎣
⎢

⎤

⎦
⎥
1,2

=

p1
p2
...
pn+1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
1,2

ŷ = u2
= s2 r2() = s2 W2u1 + b2()
= s2 W2 s1 r1() + b2⎡⎣ ⎤⎦

= s2 W2 s1 W1u0 + b1() + b2⎡⎣ ⎤⎦
= s2 W2 s1 W1x + b1() + b2⎡⎣ ⎤⎦

Two parameter vectors for
2-layer network" Output vector"

Training a
Sigmoid Network"

∂ J
∂p1,2

= ŷ − yT() ∂y
∂p1,2

= ŷ − yT() ∂ ŷ
∂r1,2

∂r1,2
∂p1,2

where
r1,2 =W1,2u0,1 + b1,2

∂ ŷ
∂r2

= I; ∂ ŷ
∂r1

=

1− ŷ1() ŷ1 0 ... 0

0 1− ŷ2() ŷ2 ... 0
... 0
0 0 ... 1− ŷn() ŷn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

∂r1
∂p1

= xT 1⎡⎣ ⎤⎦;
∂r2
∂p2

= u1
T 1⎡

⎣
⎤
⎦

p1,2k = p1,2k −η
∂ J
∂p1,2

⎛

⎝⎜
⎞

⎠⎟ k

T

where"

Small, Round Blue-Cell Tumor
Classification Example"

!  Childhood cancers, including"
! Ewing�s sarcoma (EWS)"
! Burkitt�s Lymphoma (BL)"
! Neuroblastoma (NB)"
! Rhabdomyosarcoma (RMS)"

!  cDNA microarray analysis
presented by J. Khan, et al.,
Nature Medicine, 2001, 673-679."
!  96 transcripts chosen from 2,308 probes

for training"
!  63 EWS, BL, NB, and RMS training

samples"
! Source of data for my analysis"

Desmoplastic small,
round blue-cell tumors"

Overview of Present
SRBCT Analysis"

!  Transcript selection by t test"
!  96 transcripts, 12 highest and lowest t values for

each class"
!  Overlap with Khan set: 32 transcripts"

!  Ensemble averaging of highest and lowest
t values for each class"

!  Cross-plot of ensemble averages"
!  Classification by sigmoidal neural network"
!  Validation of neural network"

!  Novel set simulation"
!  Leave-one-out simulation "

1

2

3

4

Clustering of SRBCT
Ensemble Averages"

EWS set" BL set"

NB set" RMS set"

SRBCT Neural Network "

Binary vector
output (0,1)

after rounding!

Neural Network Training Set"

�

Sample1 Sample 2 Sample 3 ... Sample 62 Sample 63
EWS EWS EWS ... RMS RMS

EWS(+)Average EWS(+)Average EWS(+)Average ... EWS(+)Average EWS(+)Average
EWS(−)Average EWS(−)Average EWS(−)Average ... EWS(−)Average EWS(−)Average
BL(+)Average BL(+)Average BL(+)Average ... BL(+)Average BL(+)Average
BL(−)Average BL(−)Average BL(−)Average ... BL(−)Average BL(−)Average
NB(+)Average NB(+)Average NB(+)Average ... NB(+)Average NB(+)Average
NB(−)Average NB(−)Average NB(−)Average ... NB(−)Average NB(−)Average
RMS(+)Average RMS(+)Average RMS(+)Average ... RMS(+)Average RMS(+)Average
RMS(−)Average RMS(−)Average RMS(−)Average ... RMS(−)Average RMS(−)Average

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Each input row is an ensemble average for a
transcript set, normalized in (–1,+1)"

Identifier!

Target Output!

Transcript!
Training!

Set!

SRBCT Neural
Network Training "

!  Neural network"
! 8 ensemble-average inputs"
! various # of sigmoidal neurons"
! 4 linear neurons"
! 4 outputs"

!  Training accuracy "
! Train on all 63 samples"
! Test on all 63 samples"

!  100% accuracy"

Leave-One-Out
Validation of SRBCT

Neural Network"

!  Remove a single sample"
!  Train on remaining samples (125 times)"
!  Evaluate class of the removed sample"
!  Repeat for each of 63 samples"
!  6 sigmoids: 99.96% accuracy (3 errors in

7,875 trials)"
!  12 sigmoids: 99.99% accuracy (1 error in

7,875 trials)"

Novel-Set Validation of
SRBCT Neural Network"

!  Network always chooses one of four
classes (i.e., �unknown� is not an option)"

!  Test on 25 novel samples (400 times each)"
!  5 EWS "
!  5 BL "
!  5 NB "
!  5 RMS"
!  5 samples of unknown class"

!  99.96% accuracy on first 20 novel samples
(3 errors in 8,000 trials)"

!  0% accuracy on unknown classes"

Observations of SRBCT Classification
using Ensemble Averages"

!  t test identified strong features for classification in
this data set"

!  Neural networks easily classified the four data types"
!  Caveat: Small, round blue-cell tumors occur in

different tissue types"
! Ewing�s sarcoma: Bone tissue"
! Burkitt�s Lymphoma: Lymph nodes"
! Neuroblastoma: Nerve tissue"
! Rhabdomyosarcoma: Soft tissue"

Gene expression (i.e., mRNA) variation may be linked
to tissue differences as well as tumor genetics"

Next Time: �
Neural Networks - 2 �

Supplementary,Material,

Impulse, Pulse-Train, and Step Response
of a LTI 2nd-Order Neural Model "

Cardiac Pacemaker and EKG Signals"

Electrochemical Signaling at Axon
Hillock and Synapse"

Axon
Hillock!

Synaptic Strength Can Be Increased
or Decreased by Externalities "

•  Synapses: learning
elements of the
nervous system"

•  Action potentials
enhanced or inhibited"

•  Chemicals can modify
signal transfer"

•  Potentiation of pre-
and post-synaptic
cells"

•  Adaptation/Learning
(potentiation)"

•  Short-term"
•  Long-term"

Microarray Training Set"

Identifier
yT
X

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

Sample1 Sample 2 Sample 3 ... Sample n −1 Sample n
Tumor Tumor Tumor ... Normal Normal

Gene A Level Gene A Level Gene A Level ... Gene A Level Gene A Level
Gene B Level Gene B Level Gene B Level ... Gene B Level Gene B Level

...
Gene m Level Gene m Level Gene m Level ... Gene m Level Gene m Level

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Microarray Training Data"

Lab Analysis of Tissue Samples"
"Tumor "="[1 ..."

" ""1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ..."
" ""0 0 0 0 0 0 0 0];"
" " " ""

"Normalized Data: Up-Regulated in Tumor"
"U22055 "= "[138 "68 "93 "62 "30 "81 "121 "7 "82 "24 "-2 "-48 "38 "..."

" " "82 "118 "55 "103 "102 "87 "62 "69 "14 "101 "25 "47 "48 "75 "..."
" " "59 "62 "116 "54 "96 "90 "130 "70 "75 "74 "35 "149 "97 "21 "..."
" " "14 "-51 "-3 "-81 "57 "-4 "16 "28 "-73 "-4 "45 "-28 "-9 "-13 "..."
" " "25 "25 "19 "-21 "3 "19 "34];"

........."
Normalized Data: Up-Regulated in Normal"
"M96839 "= "[3 "-23 "3 "12 "-22 "0 "4 "29 "-73 "32 "5 "-13 "-16 "14 "..."

" " "2 "24 "18 "19 "9 "-13 "-20 "-3 "-22 "6 "-5 "-12 "9 "28 "..."
" " "20 "-9 "30 "-15 "18 "1 "-16 "12 "-9 "3 "-35 "23 "3 "5 "..."
" " "33 "29 "47 "19 "32 "34 "20 "55 "49 "20 "10 "36 "70 "50 "..."
" " "15 "45 "56 "41 "31 "40];"

!  First row: Target classification"
!  2nd-5th rows: Up-regulated genes"
!  6th-10th rows: Down-regulated genes"

Neural Network
Classification Example"

•  ~7000 genes expressed in 62 microarray
samples"

–  Tumor = 1"
–  Normal = 0"

•  8 genes in strong feature set"
–  4 with Mean Tumor/Normal > 20:1"
–  4 with Mean Normal/Tumor > 20:1"
–  and minimum variance within up-

regulated set"

Dukes Stages: A -> B -> C -> D"

Neural Network Training Results:  
Tumor/Normal Classification, 8 Genes, 4 Nodes"

Zero classification
errors"

•  Training begins with a random set
of weights"

•  Adjustable parameters"
–  Learning rate"
–  Target error"
–  Maximum # of epochs"

•  Non-unique sets of trained weights"

Classification ="
 Columns 1 through 13 "
 1 1 1 1 1 1 1 1 1 1 1 1 1"
 Columns 14 through 26 "
 1 1 1 1 1 1 1 1 1 1 1 1 1"
 Columns 27 through 39 "
 1 1 1 1 1 1 1 1 1 1 1 1 1"
 Columns 40 through 52 "
 1 0 0 0 0 0 0 0 0 0 0 0 0"
 Columns 53 through 62 "
 0 0 0 0 0 0 0 0 0 0"

Binary network
output (0,1) after

rounding!

Neural Network Training Results:  
Tumor Stage/Normal Classification 

8 Genes, 16 Nodes"

One classification error"

•  Colon cancer classification"
–  0 = Normal"
–  1 = Adenoma"
–  2 = A Tumor"
–  3 = B Tumor"
–  4 = C Tumor"
–  5 = D Tumor"

Classification ="
 Columns 1 through 13 "
 2 1"" 3 3 3 3 3 3 3 3 3 3 3"
 Columns 14 through 26 "
 3 3 3 3 3 3 3 4 4 5 4 4 4"
 Columns 27 through 39 "
 4 4 4 5 5 5 5 5 5 5 5 1 0"
 Columns 40 through 52 "
 0 0 0 0 0 0 0 0 0 0 0 0 0"
 Columns 53 through 60 "
 0 0 0 0 0 0 0 0"

Target"= ""
"[2"1"3"3"3"3"3"3"3"3"
"3"3"3"3"3"3"3"3"3"3"4"
"4"4"4"4"4"4"4"4"5"5"5"
"5"5"5"5"5"1"0"0"0"0"0"
"0"0"0"0"0"0"0"0"0"0"0"
"0"0 "0"0"0"0]"

Scalar network
output with varying

magnitude!

Ranking by EWS t
Values (Top and Bottom 12)"

!  24 transcripts selected from 12 highest and lowest t values for EWS
vs. remainder"

Repeated for BL vs. remainder, NB vs. remainder, and RMS vs. remainder"

Sort by EWS t Value EWS BL NB RMS
Image ID Transcript Description t Value t Value t Value t Value

770394 Fc fragment of IgG, receptor, transporter, alpha 12.04 -6.67 -6.17 -4.79
1435862 antigen identified by monoclonal antibodies 12E7, F21 and O13 9.09 -6.75 -5.01 -4.03
377461 caveolin 1, caveolae protein, 22kD 8.82 -5.97 -4.91 -4.78
814260 follicular lymphoma variant translocation 1 8.17 -4.31 -4.70 -5.48
491565 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain 7.60 -5.82 -2.62 -3.68
841641 cyclin D1 (PRAD1: parathyroid adenomatosis 1) 6.84 -9.93 0.56 -4.30

1471841 ATPase, Na+/K+ transporting, alpha 1 polypeptide 6.65 -3.56 -2.72 -4.69
866702 protein tyrosine phosphatase, non-receptor type 13 6.54 -4.99 -4.07 -4.84
713922 glutathione S-transferase M1 6.17 -5.61 -5.16 -1.97
308497 KIAA0467 protein 5.99 -6.69 -6.63 -1.11
770868 NGFI-A binding protein 2 (ERG1 binding protein 2) 5.93 -6.74 -3.88 -1.21
345232 lymphotoxin alpha (TNF superfamily, member 1) 5.61 -8.05 -2.49 -1.19

786084 chromobox homolog 1 (Drosophila HP1 beta) -5.04 -1.05 9.65 -0.62
796258 sarcoglycan, alpha (50kD dystrophin-associated glycoprotein) -5.04 -3.31 -3.86 6.83
431397 -5.04 2.64 2.19 0.64
825411 N-acetylglucosamine receptor 1 (thyroid) -5.06 -1.45 5.79 0.76
859359 quinone oxidoreductase homolog -5.23 -7.27 0.78 5.40

75254 cysteine and glycine-rich protein 2 (LIM domain only, smooth muscle) -5.30 -4.11 2.20 3.68
448386 -5.38 -0.42 3.76 0.14

68950 cyclin E1 -5.80 0.03 -1.58 5.10
774502 protein tyrosine phosphatase, non-receptor type 12 -5.80 -5.56 3.76 3.66
842820 inducible poly(A)-binding protein -6.14 0.60 0.66 3.80
214572 ESTs -6.39 -0.08 -0.22 4.56
295985 ESTs -9.26 -0.13 3.24 2.95

Comparison of Present SRBCT
Set with Khan Top 10"

EWS BL NB RMS Most Khan
Student t Student t Student t Student t Significant Gene

Image ID Gene Description Value Value Value Value t Value Class

296448
insulin-like growth factor 2
(somatomedin A) -4.789 -5.226 -1.185 5.998 RMS RMS

207274

Human DNA for insulin-like
growth factor II (IGF-2); exon
7 and additional ORF -4.377 -5.424 -1.639 5.708 RMS RMS

841641
cyclin D1 (PRAD1:
parathyroid adenomatosis 1) 6.841 -9.932 0.565 -4.300 BL (-) EWS/NB

365826 growth arrest-specific 1 3.551 -8.438 -6.995 1.583 BL (-) EWS/RMS
486787 calponin 3, acidic -4.335 -6.354 2.446 2.605 BL (-) RMS/NB

770394
Fc fragment of IgG, receptor,
transporter, alpha 12.037 -6.673 -6.173 -4.792 EWS EWS

244618 ESTs -4.174 -4.822 -3.484 5.986 RMS RMS

233721
insulin-like growth factor
binding protein 2 (36kD) 0.058 -7.487 -1.599 2.184 BL (-) Not BL

43733 glycogenin 2 4.715 -4.576 -3.834 -3.524 EWS EWS
295985 ESTs -9.260 -0.133 3.237 2.948 EWS (-) Not EWS

!  Red: both sets"
!  Black: Khan set only"

MATLAB Program for Neural Network
Analysis with Leave-One-Out Validation -

Initialization(1)"
'Leave-One-Out Neural Network Analysis of Khan Data'!
!
% Neural Network with Vector Output!
% Based on 63 Samples of 8 Positive and Negative t-Value Metagenes!
!
% 12/5/2007!
!
 clear!
!
 Target = [ones(1,23) zeros(1,40)!
 zeros(1,23) ones(1,8) zeros(1,32)!
 zeros(1,31) ones(1,12) zeros(1,20)!
 zeros(1,43) ones(1,20)];!

! !
 TrainingData = [2.489 !2.725 !2.597 !2.831 ... !!
 !
 !
 !
 !
 !
 !
 ];!
 !

% Validation Sample and Leave-One-Out Training Set!
!
 MisClass = 0;!
 iSamLog = [];!
 iRepLog = [];!
 ErrorLog = [];!
 OutputLog = [];!
 SizeTarget = size(Target);!
 SizeTD = size(TrainingData);!
 !
% Preprocessing of Training Data!
!
 [TrainingData,minp,maxp,tn,mint,maxt] = premnmx(TrainingData,Target);!

MATLAB Program for Neural Network
Analysis with Leave-One-Out Validation

- Initialization(2)"

premnmx has been replaced by mapminmax in MATLAB"

for iSam = 1:SizeTD(2)!
 ValidSample = TrainingData(:,iSam);!
 ReducedData = TrainingData;!
 ReducedData(:,iSam) = [];!
 ReducedTarget = Target;!
 ReducedTarget(:,iSam) = [];!
 Repeats = 2; !

MATLAB Program for Neural Network
Analysis with Leave-One-Out

Validation - Initialization(3)"

MATLAB Program for Neural Network
Analysis with Leave-One-Out Validation -

Training(1)"
for i = 1:Repeats!
 Range = minmax(ReducedData);!
 Neurons = [12,4];!
 Nodes = {'logsig', 'purelin'};!
 Beta = 0.5;!
 Epochs = 200;!
 Trainer = 'trainbr';!
!
 Net = newff(Range,Neurons,Nodes,Trainer);!
 !
 Net.trainParam.show = 100;!
 Net.trainParam.lr = Beta;!
 Net.trainParam.epochs = Epochs;!
 Net.trainParam.goal = 0.001;!
 !
 [Net,TrainingRecord] = train(Net,ReducedData,ReducedTarget);!
 !
 NetOutput = sim(Net, ReducedData);!
 Rounded = round(NetOutput);!
 Error = ReducedTarget - Rounded;ar!

Check calling sequence of newff

MATLAB Program for Neural Network
Analysis with Leave-One-Out Validation -

Training(2)"
% Validation with Single Sample!
 !
 NovelOutput = sim(Net,ValidSample);!
 LengthNO = length(NovelOutput);!
 NovelRounded = round(NovelOutput);!
 NovelRounded = max(NovelRounded,zeros(LengthNO,1));!
 NovelRounded = min(NovelRounded,ones(LengthNO,1));!
 !
% If no actual output is greater than 0.5, choose the largest !
% for k = 1:SizeNO(2)!
 !
 if (isequal(NovelRounded,zeros(LengthNO,1)))!
 [c,j] = max(NovelOutput);!
 NovelRounded(j,1) = 1;!
 end!
 !
 AbsDiff = abs(NovelOutput - NovelRounded);-!

MATLAB Program for Neural Network
Analysis with Leave-One-Out Validation -

Training(3)"
% If two rounded outputs are "1", choose the one whose actual output is!
% closest to "1" !
 for j = 1:(LengthNO - 1)!
 if NovelRounded(j) == 1!
 for k = (j + 1):LengthNO!
 if NovelRounded(k) == 1!
 if (AbsDiff(j) < AbsDiff(k))!
 NovelRounded(k) = 0;!
 else!
 NovelRounded(j) = 0;!
 end!
 end!
 end!
 end!
 end!
 !
 NovelError = Target(:,iSam) - NovelRounded; !

MATLAB Program for Neural Network
Analysis with Leave-One-Out Validation

- Training(4)"
 if (~isequal(NovelError,zeros(LengthNO,1)))!
 MisClass = MisClass + 1;!
 iSamLog = [iSamLog iSam];!
 iRepLog = [iRepLog i];!
 ErrorLog = [ErrorLog NovelError];!
 OutputLog = [OutputLog NovelOutput];!
 end!
 end!
 end!
 !
 MisClass!
 iSamLog!
 iRepLog!
 ErrorLog!
 OutputLog!
!
 Trials = iSam * Repeats !

Algebraic Training of a Neural
Network �

Algebraic Training for Exact Fit
to a Smooth Function"

•  Smooth functions define equilibrium control
settings at many operating points"

•  Neural network required to fit the functions"

Ferrari and Stengel!

Algorithm for
Network Training "

δTc : Throttle command
δSc : Spoiler command
δAc : Aileron command
δRc : Rudder command
δθc : Pitch angle command
δ ψ c : Yaw rate command

Results for Network Training "
•  45-node example"
•  Algorithm is considerably

faster than search methods"

